PosDiffAE: Position-aware Diffusion Auto-encoder For High-Resolution Brain Tissue Classification Incorporating Artifact Restoration
- URL: http://arxiv.org/abs/2507.02405v1
- Date: Thu, 03 Jul 2025 07:58:53 GMT
- Title: PosDiffAE: Position-aware Diffusion Auto-encoder For High-Resolution Brain Tissue Classification Incorporating Artifact Restoration
- Authors: Ayantika Das, Moitreya Chaudhuri, Koushik Bhat, Keerthi Ram, Mihail Bota, Mohanasankar Sivaprakasam,
- Abstract summary: We devise a mechanism to structure the latent space of a diffusion auto-encoding model, towards recognizing region-specific cellular patterns in brain images.<n>We also devise an unsupervised tear artifact restoration technique based on neighborhood awareness, utilizing latent representations and the constrained generation capability of diffusion models during inference.
- Score: 0.5442686600296733
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Denoising diffusion models produce high-fidelity image samples by capturing the image distribution in a progressive manner while initializing with a simple distribution and compounding the distribution complexity. Although these models have unlocked new applicabilities, the sampling mechanism of diffusion does not offer means to extract image-specific semantic representation, which is inherently provided by auto-encoders. The encoding component of auto-encoders enables mapping between a specific image and its latent space, thereby offering explicit means of enforcing structures in the latent space. By integrating an encoder with the diffusion model, we establish an auto-encoding formulation, which learns image-specific representations and offers means to organize the latent space. In this work, First, we devise a mechanism to structure the latent space of a diffusion auto-encoding model, towards recognizing region-specific cellular patterns in brain images. We enforce the representations to regress positional information of the patches from high-resolution images. This creates a conducive latent space for differentiating tissue types of the brain. Second, we devise an unsupervised tear artifact restoration technique based on neighborhood awareness, utilizing latent representations and the constrained generation capability of diffusion models during inference. Third, through representational guidance and leveraging the inference time steerable noising and denoising capability of diffusion, we devise an unsupervised JPEG artifact restoration technique.
Related papers
- Correcting Diffusion-Based Perceptual Image Compression with Privileged End-to-End Decoder [49.01721042973929]
This paper presents a diffusion-based image compression method that employs a privileged end-to-end decoder model as correction.
Experiments demonstrate the superiority of our method in both distortion and perception compared with previous perceptual compression methods.
arXiv Detail & Related papers (2024-04-07T10:57:54Z) - Laplacian-guided Entropy Model in Neural Codec with Blur-dissipated Synthesis [10.428185253933004]
We replace Gaussian decoders with a non-isotropic diffusion model at the decoder side.
Our framework is equipped with a novel entropy model that accurately models probability distribution latent representation.
Our experiments demonstrate that our framework yields better perceptual quality compared to cutting-edge generative entropy-based codecs.
arXiv Detail & Related papers (2024-03-24T18:33:16Z) - SODA: Bottleneck Diffusion Models for Representation Learning [75.7331354734152]
We introduce SODA, a self-supervised diffusion model, designed for representation learning.
The model incorporates an image encoder, which distills a source view into a compact representation, that guides the generation of related novel views.
We show that by imposing a tight bottleneck between the encoder and a denoising decoder, we can turn diffusion models into strong representation learners.
arXiv Detail & Related papers (2023-11-29T18:53:34Z) - Steerable Conditional Diffusion for Out-of-Distribution Adaptation in Medical Image Reconstruction [75.91471250967703]
We introduce a novel sampling framework called Steerable Conditional Diffusion.<n>This framework adapts the diffusion model, concurrently with image reconstruction, based solely on the information provided by the available measurement.<n>We achieve substantial enhancements in out-of-distribution performance across diverse imaging modalities.
arXiv Detail & Related papers (2023-08-28T08:47:06Z) - Hierarchical Diffusion Autoencoders and Disentangled Image Manipulation [36.20575570779196]
We exploit the fine-grained-to-abstract and lowlevel-to-high-level feature hierarchy for the latent space of diffusion models.
The hierarchical latent space of HDAE inherently encodes different abstract levels of semantics and provides more comprehensive semantic representations.
We demonstrate the effectiveness of our proposed approach with extensive experiments and applications on image reconstruction, style mixing, controllable, detail-preserving and disentangled image manipulation.
arXiv Detail & Related papers (2023-04-24T05:35:59Z) - Diffusion Models as Masked Autoencoders [52.442717717898056]
We revisit generatively pre-training visual representations in light of recent interest in denoising diffusion models.
While directly pre-training with diffusion models does not produce strong representations, we condition diffusion models on masked input and formulate diffusion models as masked autoencoders (DiffMAE)
We perform a comprehensive study on the pros and cons of design choices and build connections between diffusion models and masked autoencoders.
arXiv Detail & Related papers (2023-04-06T17:59:56Z) - Denoising Diffusion Autoencoders are Unified Self-supervised Learners [58.194184241363175]
This paper shows that the networks in diffusion models, namely denoising diffusion autoencoders (DDAE), are unified self-supervised learners.
DDAE has already learned strongly linear-separable representations within its intermediate layers without auxiliary encoders.
Our diffusion-based approach achieves 95.9% and 50.0% linear evaluation accuracies on CIFAR-10 and Tiny-ImageNet.
arXiv Detail & Related papers (2023-03-17T04:20:47Z) - Semantic-Conditional Diffusion Networks for Image Captioning [116.86677915812508]
We propose a new diffusion model based paradigm tailored for image captioning, namely Semantic-Conditional Diffusion Networks (SCD-Net)
In SCD-Net, multiple Diffusion Transformer structures are stacked to progressively strengthen the output sentence with better visional-language alignment and linguistical coherence.
Experiments on COCO dataset demonstrate the promising potential of using diffusion models in the challenging image captioning task.
arXiv Detail & Related papers (2022-12-06T16:08:16Z) - Lossy Image Compression with Conditional Diffusion Models [25.158390422252097]
This paper outlines an end-to-end optimized lossy image compression framework using diffusion generative models.
In contrast to VAE-based neural compression, where the (mean) decoder is a deterministic neural network, our decoder is a conditional diffusion model.
Our approach yields stronger reported FID scores than the GAN-based model, while also yielding competitive performance with VAE-based models in several distortion metrics.
arXiv Detail & Related papers (2022-09-14T21:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.