S2FGL: Spatial Spectral Federated Graph Learning
- URL: http://arxiv.org/abs/2507.02409v3
- Date: Tue, 05 Aug 2025 15:46:50 GMT
- Title: S2FGL: Spatial Spectral Federated Graph Learning
- Authors: Zihan Tan, Suyuan Huang, Guancheng Wan, Wenke Huang, He Li, Mang Ye,
- Abstract summary: Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs)<n>Current research addresses subgraph-FL from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure.<n>We propose a global knowledge repository to mitigate the challenge of poor semantic knowledge caused by label signal disruption.
- Score: 29.56933877275497
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Graph Learning (FGL) combines the privacy-preserving capabilities of federated learning (FL) with the strong graph modeling capability of Graph Neural Networks (GNNs). Current research addresses subgraph-FL from the structural perspective, neglecting the propagation of graph signals on spatial and spectral domains of the structure. From a spatial perspective, subgraph-FL introduces edge disconnections between clients, leading to disruptions in label signals and a degradation in the semantic knowledge of the global GNN. From a spectral perspective, spectral heterogeneity causes inconsistencies in signal frequencies across subgraphs, which makes local GNNs overfit the local signal propagation schemes. As a result, spectral client drift occurs, undermining global generalizability. To tackle the challenges, we propose a global knowledge repository to mitigate the challenge of poor semantic knowledge caused by label signal disruption. Furthermore, we design a frequency alignment to address spectral client drift. The combination of Spatial and Spectral strategies forms our framework S2FGL. Extensive experiments on multiple datasets demonstrate the superiority of S2FGL. The code is available at https://github.com/Wonder7racer/S2FGL.git.
Related papers
- Graph Neural Networks Are More Than Filters: Revisiting and Benchmarking from A Spectral Perspective [49.613774305350084]
Graph Neural Networks (GNNs) have achieved remarkable success in various graph-based learning tasks.<n>Recent studies suggest that other components such as non-linear layers may also significantly affect how GNNs process the input graph data in the spectral domain.<n>This paper introduces a comprehensive benchmark to measure and evaluate GNNs' capability in capturing and leveraging the information encoded in different frequency components of the input graph data.
arXiv Detail & Related papers (2024-12-10T04:53:53Z) - FedSSP: Federated Graph Learning with Spectral Knowledge and Personalized Preference [31.796411806840087]
Federated Graph Learning (pFGL) facilitates the decentralized training of Graph Neural Networks (GNNs) without compromising privacy.
Previous pFGL methods incorrectly share non-generic knowledge globally and fail to tailor personalized solutions locally.
We propose our pFGL framework FedSSP which Shares generic Spectral knowledge while satisfying graph Preferences.
arXiv Detail & Related papers (2024-10-26T07:09:27Z) - Spectral Graph Reasoning Network for Hyperspectral Image Classification [0.43512163406551996]
Convolutional neural networks (CNNs) have achieved remarkable performance in hyperspectral image (HSI) classification.
We propose a spectral graph reasoning network (SGR) learning framework comprising two crucial modules.
Experiments on two HSI datasets demonstrate that the proposed architecture can significantly improve the classification accuracy.
arXiv Detail & Related papers (2024-07-02T20:29:23Z) - HoloNets: Spectral Convolutions do extend to Directed Graphs [59.851175771106625]
Conventional wisdom dictates that spectral convolutional networks may only be deployed on undirected graphs.
Here we show this traditional reliance on the graph Fourier transform to be superfluous.
We provide a frequency-response interpretation of newly developed filters, investigate the influence of the basis used to express filters and discuss the interplay with characteristic operators on which networks are based.
arXiv Detail & Related papers (2023-10-03T17:42:09Z) - Specformer: Spectral Graph Neural Networks Meet Transformers [51.644312964537356]
Spectral graph neural networks (GNNs) learn graph representations via spectral-domain graph convolutions.
We introduce Specformer, which effectively encodes the set of all eigenvalues and performs self-attention in the spectral domain.
By stacking multiple Specformer layers, one can build a powerful spectral GNN.
arXiv Detail & Related papers (2023-03-02T07:36:23Z) - Quasi-Framelets: Robust Graph Neural Networks via Adaptive Framelet Convolution [28.474359021962346]
We propose a multiscale framelet convolution for spectral graph neural networks (GNNs)
The proposed design excels in filtering out unwanted spectral information and significantly reduces the adverse effects of noisy graph signals.
It exhibits remarkable resilience to noisy data and adversarial attacks, highlighting its potential as a robust solution for real-world graph applications.
arXiv Detail & Related papers (2022-01-11T00:10:28Z) - Pointspectrum: Equivariance Meets Laplacian Filtering for Graph
Representation Learning [3.7875603451557063]
Graph Representation Learning (GRL) has become essential for modern graph data mining and learning tasks.
While Graph Neural Networks (GNNs) have been used in state-of-the-art GRL architectures, they have been shown to suffer from over smoothing.
We propose PointSpectrum, a spectral method that incorporates a set equivariant network to account for a graph's structure.
arXiv Detail & Related papers (2021-09-06T10:59:11Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
Spectral graph convolutional networks (SGCNs) have been attracting increasing attention in graph representation learning.
We propose a novel class of spectral graph convolutional networks that implement graph convolutions with adaptive graph wavelets.
arXiv Detail & Related papers (2021-08-03T17:57:53Z) - Spectral-Spatial Global Graph Reasoning for Hyperspectral Image
Classification [50.899576891296235]
Convolutional neural networks have been widely applied to hyperspectral image classification.
Recent methods attempt to address this issue by performing graph convolutions on spatial topologies.
arXiv Detail & Related papers (2021-06-26T06:24:51Z) - Deoscillated Graph Collaborative Filtering [74.55967586618287]
Collaborative Filtering (CF) signals are crucial for a Recommender System(RS) model to learn user and item embeddings.
Recent Graph Neural Networks(GNNs) propose to stack multiple aggregation layers to propagate high-order signals.
We propose a new RS model, named as textbfDeoscillated textbfGraph textbfCollaborative textbfFiltering(DGCF)
arXiv Detail & Related papers (2020-11-04T02:26:53Z) - Bridging the Gap Between Spectral and Spatial Domains in Graph Neural
Networks [8.563354084119062]
We show some equivalence of the graph convolution process regardless it is designed in the spatial or the spectral domain.
The proposed framework is used to design new convolutions in spectral domain with a custom frequency profile while applying them in the spatial domain.
arXiv Detail & Related papers (2020-03-26T01:49:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.