3D Heart Reconstruction from Sparse Pose-agnostic 2D Echocardiographic Slices
- URL: http://arxiv.org/abs/2507.02411v1
- Date: Thu, 03 Jul 2025 08:13:07 GMT
- Title: 3D Heart Reconstruction from Sparse Pose-agnostic 2D Echocardiographic Slices
- Authors: Zhurong Chen, Jinhua Chen, Wei Zhuo, Wufeng Xue, Dong Ni,
- Abstract summary: We propose an innovative framework for reconstructing personalized 3D heart anatomy from 2D echo slices.<n>When six planes are used, the reconstructed 3D heart can lead to a significant improvement for LV volume estimation.<n>This study provides a new way for personalized 3D structure and function analysis from cardiac ultrasound.
- Score: 6.275809518974307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Echocardiography (echo) plays an indispensable role in the clinical practice of heart diseases. However, ultrasound imaging typically provides only two-dimensional (2D) cross-sectional images from a few specific views, making it challenging to interpret and inaccurate for estimation of clinical parameters like the volume of left ventricle (LV). 3D ultrasound imaging provides an alternative for 3D quantification, but is still limited by the low spatial and temporal resolution and the highly demanding manual delineation. To address these challenges, we propose an innovative framework for reconstructing personalized 3D heart anatomy from 2D echo slices that are frequently used in clinical practice. Specifically, a novel 3D reconstruction pipeline is designed, which alternatively optimizes between the 3D pose estimation of these 2D slices and the 3D integration of these slices using an implicit neural network, progressively transforming a prior 3D heart shape into a personalized 3D heart model. We validate the method with two datasets. When six planes are used, the reconstructed 3D heart can lead to a significant improvement for LV volume estimation over the bi-plane method (error in percent: 1.98\% VS. 20.24\%). In addition, the whole reconstruction framework makes even an important breakthrough that can estimate RV volume from 2D echo slices (with an error of 5.75\% ). This study provides a new way for personalized 3D structure and function analysis from cardiac ultrasound and is of great potential in clinical practice.
Related papers
- S2MNet: Speckle-To-Mesh Net for Three-Dimensional Cardiac Morphology Reconstruction via Echocardiogram [8.28431711854234]
Most clinical echocardiograms provide only two-dimensional views, limiting the ability to fully assess cardiac anatomy and function in three dimensions.<n>We propose a deep learning framework S2MNet that reconstructs continuous and high-fidelity 3D heart models by integrating six slices of routinely acquired 2D echocardiogram views.
arXiv Detail & Related papers (2025-05-09T14:56:48Z) - MedTet: An Online Motion Model for 4D Heart Reconstruction [59.74234226055964]
We present a novel approach to reconstruction of 3D cardiac motion from sparse intraoperative data.<n>Existing methods can accurately reconstruct 3D organ geometries from full 3D volumetric imaging.<n>We propose a versatile framework for reconstructing 3D motion from such partial data.
arXiv Detail & Related papers (2024-12-03T17:18:33Z) - DuoLift-GAN:Reconstructing CT from Single-view and Biplanar X-Rays with Generative Adversarial Networks [1.3812010983144802]
We introduce DuoLift Generative Adversarial Networks (DuoLift-GAN), a novel architecture with dual branches that independently elevate 2D images and their features into 3D representations.<n>These 3D outputs are merged into a unified 3D feature map and decoded into a complete 3D chest volume, enabling richer 3D information capture.
arXiv Detail & Related papers (2024-11-12T17:11:18Z) - Structure-aware World Model for Probe Guidance via Large-scale Self-supervised Pre-train [66.35766658717205]
Successful echocardiography requires a thorough understanding of the structures on the two-dimensional plane and the spatial relationships between planes in three-dimensional space.
We propose a large-scale self-supervised pre-training method to acquire a cardiac structure-aware world model.
arXiv Detail & Related papers (2024-06-28T08:54:44Z) - Geometry-Aware Attenuation Learning for Sparse-View CBCT Reconstruction [53.93674177236367]
Cone Beam Computed Tomography (CBCT) plays a vital role in clinical imaging.
Traditional methods typically require hundreds of 2D X-ray projections to reconstruct a high-quality 3D CBCT image.
This has led to a growing interest in sparse-view CBCT reconstruction to reduce radiation doses.
We introduce a novel geometry-aware encoder-decoder framework to solve this problem.
arXiv Detail & Related papers (2023-03-26T14:38:42Z) - Efficient Pix2Vox++ for 3D Cardiac Reconstruction from 2D echo views [0.6524460254566904]
Reconstructing cardiac anatomy in 3D can enable discovery of new biomarkers.
Most ultrasound systems only have 2D imaging capabilities.
We propose a pipeline to perform reconstruction of 3D anatomy from 2D standard cardiac views.
arXiv Detail & Related papers (2022-07-27T10:05:46Z) - DeepRecon: Joint 2D Cardiac Segmentation and 3D Volume Reconstruction
via A Structure-Specific Generative Method [12.26150675728958]
We propose an end-to-end latent-space-based framework, DeepRecon, that generates multiple clinically essential outcomes.
Our method identifies the optimal latent representation of the cine image that contains accurate semantic information for cardiac structures.
In particular, our model jointly generates synthetic images with accurate semantic information and segmentation of the cardiac structures.
arXiv Detail & Related papers (2022-06-14T20:46:11Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
We propose a fully automated pipeline for both detection and matching of curvilinear structures in stereo pairs.
We mainly focus on 3D reconstruction of dislocations from stereo pairs of TEM images.
arXiv Detail & Related papers (2021-10-14T23:05:47Z) - 3D-to-2D Distillation for Indoor Scene Parsing [78.36781565047656]
We present a new approach that enables us to leverage 3D features extracted from large-scale 3D data repository to enhance 2D features extracted from RGB images.
First, we distill 3D knowledge from a pretrained 3D network to supervise a 2D network to learn simulated 3D features from 2D features during the training.
Second, we design a two-stage dimension normalization scheme to calibrate the 2D and 3D features for better integration.
Third, we design a semantic-aware adversarial training model to extend our framework for training with unpaired 3D data.
arXiv Detail & Related papers (2021-04-06T02:22:24Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.