Partial Weakly-Supervised Oriented Object Detection
- URL: http://arxiv.org/abs/2507.02751v1
- Date: Thu, 03 Jul 2025 16:13:10 GMT
- Title: Partial Weakly-Supervised Oriented Object Detection
- Authors: Mingxin Liu, Peiyuan Zhang, Yuan Liu, Wei Zhang, Yue Zhou, Ning Liao, Ziyang Gong, Junwei Luo, Zhirui Wang, Yi Yu, Xue Yang,
- Abstract summary: High cost of dataset annotation remains a major concern.<n>First Partial Weakly-Supervised Oriented Object Detection (PWOOD) framework based on partially weak annotations.
- Score: 18.678764412900037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The growing demand for oriented object detection (OOD) across various domains has driven significant research in this area. However, the high cost of dataset annotation remains a major concern. Current mainstream OOD algorithms can be mainly categorized into three types: (1) fully supervised methods using complete oriented bounding box (OBB) annotations, (2) semi-supervised methods using partial OBB annotations, and (3) weakly supervised methods using weak annotations such as horizontal boxes or points. However, these algorithms inevitably increase the cost of models in terms of annotation speed or annotation cost. To address this issue, we propose:(1) the first Partial Weakly-Supervised Oriented Object Detection (PWOOD) framework based on partially weak annotations (horizontal boxes or single points), which can efficiently leverage large amounts of unlabeled data, significantly outperforming weakly supervised algorithms trained with partially weak annotations, also offers a lower cost solution; (2) Orientation-and-Scale-aware Student (OS-Student) model capable of learning orientation and scale information with only a small amount of orientation-agnostic or scale-agnostic weak annotations; and (3) Class-Agnostic Pseudo-Label Filtering strategy (CPF) to reduce the model's sensitivity to static filtering thresholds. Comprehensive experiments on DOTA-v1.0/v1.5/v2.0 and DIOR datasets demonstrate that our PWOOD framework performs comparably to, or even surpasses, traditional semi-supervised algorithms.
Related papers
- Collaborative Feature-Logits Contrastive Learning for Open-Set Semi-Supervised Object Detection [75.02249869573994]
In open-set scenarios, the unlabeled dataset contains both in-distribution (ID) classes and out-of-distribution (OOD) classes.<n>Applying semi-supervised detectors in such settings can lead to misclassifying OOD class as ID classes.<n>We propose a simple yet effective method, termed Collaborative Feature-Logits Detector (CFL-Detector)
arXiv Detail & Related papers (2024-11-20T02:57:35Z) - How to Efficiently Annotate Images for Best-Performing Deep Learning Based Segmentation Models: An Empirical Study with Weak and Noisy Annotations and Segment Anything Model [16.745318743249864]
Deep neural networks (DNNs) have demonstrated exceptional performance across various image segmentation tasks.<n>To mitigate this challenge, alternative approaches such as using weak labels or less precise (noisy) annotations can be employed.<n>Noisy and weak labels are significantly quicker to generate, allowing for more annotated images within the same time frame.
arXiv Detail & Related papers (2023-12-17T04:26:42Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
We resort to a novel kernel strategy to identify the most informative point clouds to acquire labels.
To accommodate both one-stage (i.e., SECOND) and two-stage detectors, we incorporate the classification entropy tangent and well trade-off between detection performance and the total number of bounding boxes selected for annotation.
Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art method.
arXiv Detail & Related papers (2023-07-16T04:27:03Z) - Exploring Active 3D Object Detection from a Generalization Perspective [58.597942380989245]
Uncertainty-based active learning policies fail to balance the trade-off between point cloud informativeness and box-level annotation costs.
We propose textscCrb, which hierarchically filters out the point clouds of redundant 3D bounding box labels.
Experiments show that the proposed approach outperforms existing active learning strategies.
arXiv Detail & Related papers (2023-01-23T02:43:03Z) - One Class One Click: Quasi Scene-level Weakly Supervised Point Cloud
Semantic Segmentation with Active Learning [29.493759008637532]
We introduce One Class One Click (OCOC), a low cost yet informative quasi scene-level label, which encapsulates point-level and scene-level annotations.
An active weakly supervised framework is proposed to leverage scarce labels by involving weak supervision from global and local perspectives.
It considerably outperforms genuine scene-level weakly supervised methods by up to 25% in terms of average F1 score.
arXiv Detail & Related papers (2022-11-23T01:23:26Z) - Semi-supervised 3D Object Detection with Proficient Teachers [114.54835359657707]
Dominated point cloud-based 3D object detectors in autonomous driving scenarios rely heavily on the huge amount of accurately labeled samples.
Pseudo-Labeling methodology is commonly used for SSL frameworks, however, the low-quality predictions from the teacher model have seriously limited its performance.
We propose a new Pseudo-Labeling framework for semi-supervised 3D object detection, by enhancing the teacher model to a proficient one with several necessary designs.
arXiv Detail & Related papers (2022-07-26T04:54:03Z) - Interpolation-based Contrastive Learning for Few-Label Semi-Supervised
Learning [43.51182049644767]
Semi-supervised learning (SSL) has long been proved to be an effective technique to construct powerful models with limited labels.
Regularization-based methods which force the perturbed samples to have similar predictions with the original ones have attracted much attention.
We propose a novel contrastive loss to guide the embedding of the learned network to change linearly between samples.
arXiv Detail & Related papers (2022-02-24T06:00:05Z) - SparseDet: Improving Sparsely Annotated Object Detection with
Pseudo-positive Mining [76.95808270536318]
We propose an end-to-end system that learns to separate proposals into labeled and unlabeled regions using Pseudo-positive mining.
While the labeled regions are processed as usual, self-supervised learning is used to process the unlabeled regions.
We conduct exhaustive experiments on five splits on the PASCAL-VOC and COCO datasets achieving state-of-the-art performance.
arXiv Detail & Related papers (2022-01-12T18:57:04Z) - WSSOD: A New Pipeline for Weakly- and Semi-Supervised Object Detection [75.80075054706079]
We propose a weakly- and semi-supervised object detection framework (WSSOD)
An agent detector is first trained on a joint dataset and then used to predict pseudo bounding boxes on weakly-annotated images.
The proposed framework demonstrates remarkable performance on PASCAL-VOC and MSCOCO benchmark, achieving a high performance comparable to those obtained in fully-supervised settings.
arXiv Detail & Related papers (2021-05-21T11:58:50Z) - Towards Using Count-level Weak Supervision for Crowd Counting [55.58468947486247]
This paper studies the problem of weakly-supervised crowd counting which learns a model from only a small amount of location-level annotations (fully-supervised) but a large amount of count-level annotations (weakly-supervised)
We devise a simple-yet-effective training strategy, namely Multiple Auxiliary Tasks Training (MATT), to construct regularizes for restricting the freedom of the generated density maps.
arXiv Detail & Related papers (2020-02-29T02:58:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.