Position Paper: Towards Open Complex Human-AI Agents Collaboration System for Problem-Solving and Knowledge Management
- URL: http://arxiv.org/abs/2505.00018v1
- Date: Thu, 24 Apr 2025 05:57:03 GMT
- Title: Position Paper: Towards Open Complex Human-AI Agents Collaboration System for Problem-Solving and Knowledge Management
- Authors: Ju Wu, Calvin K. L. Or,
- Abstract summary: This position paper critically surveys a broad spectrum of recent empirical developments on human-AI agents collaboration.<n>We propose a novel conceptual architecture that systematically interlinks the technical details of multi-agent coordination, knowledge management, cybernetic feedback loops, and higher-level control mechanisms.
- Score: 0.48342038441006807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This position paper critically surveys a broad spectrum of recent empirical developments on human-AI agents collaboration, highlighting both their technical achievements and persistent gaps. We observe a lack of a unifying theoretical framework that can coherently integrate these varied studies, especially when tackling open-ended, complex tasks. To address this, we propose a novel conceptual architecture: one that systematically interlinks the technical details of multi-agent coordination, knowledge management, cybernetic feedback loops, and higher-level control mechanisms. By mapping existing contributions, from symbolic AI techniques and connectionist LLM-based agents to hybrid organizational practices, onto this proposed framework (Hierarchical Exploration-Exploitation Net), our approach facilitates revision of legacy methods and inspires new work that fuses qualitative and quantitative paradigms. The paper's structure allows it to be read from any section, serving equally as a critical review of technical implementations and as a forward-looking reference for designing or extending human-AI symbioses. Together, these insights offer a stepping stone toward deeper co-evolution of human cognition and AI capability.
Related papers
- Advancing Multi-Agent Systems Through Model Context Protocol: Architecture, Implementation, and Applications [0.0]
This paper introduces a comprehensive framework for advancing multi-agent systems through Model Context Protocol (MCP)<n>We extend previous work on AI agent architectures by developing a unified theoretical foundation, advanced context management techniques, and scalable coordination patterns.<n>We identify current limitations, emerging research opportunities, and potential transformative applications across industries.
arXiv Detail & Related papers (2025-04-26T03:43:03Z) - Synergizing RAG and Reasoning: A Systematic Review [8.842022673771147]
Recent breakthroughs in large language models (LLMs) have propelled Retrieval-Augmented Generation (RAG) to unprecedented levels.<n>This paper presents a systematic review of the collaborative interplay between RAG and reasoning.
arXiv Detail & Related papers (2025-04-22T13:55:13Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
Reasoning is a fundamental cognitive process that enables logical inference, problem-solving, and decision-making.<n>With the rapid advancement of large language models (LLMs), reasoning has emerged as a key capability that distinguishes advanced AI systems.<n>We categorize existing methods along two dimensions: (1) Regimes, which define the stage at which reasoning is achieved; and (2) Architectures, which determine the components involved in the reasoning process.
arXiv Detail & Related papers (2025-04-12T01:27:49Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
Large Language Model (LLM) agents, with goal-driven behaviors and dynamic adaptation capabilities, potentially represent a critical pathway toward artificial general intelligence.<n>This survey systematically deconstructs LLM agent systems through a methodology-centered taxonomy.<n>Our work provides a unified architectural perspective, examining how agents are constructed, how they collaborate, and how they evolve over time.
arXiv Detail & Related papers (2025-03-27T12:50:17Z) - AI-Enabled Knowledge Sharing for Enhanced Collaboration and Decision-Making in Non-Profit Healthcare Organizations: A Scoping Review Protocol [0.0]
This protocol outlines a scoping review designed to systematically map the existing body of evidence on AI-enabled knowledge sharing in non-profit healthcare organizations.<n>The review aims to investigate how such technologies enhance collaboration and decision-making, particularly in the context of reduced external support following the cessation of USAID operations.
arXiv Detail & Related papers (2025-03-10T17:09:12Z) - Coding for Intelligence from the Perspective of Category [66.14012258680992]
Coding targets compressing and reconstructing data, and intelligence.
Recent trends demonstrate the potential homogeneity of these two fields.
We propose a novel problem of Coding for Intelligence from the category theory view.
arXiv Detail & Related papers (2024-07-01T07:05:44Z) - Deconstructing Human-AI Collaboration: Agency, Interaction, and Adaptation [9.36651659099834]
We propose a new unified set of dimensions through which to analyze and describe human-AI systems.
Our conceptual model is centered around three high-level aspects - agency, interaction, and adaptation.
arXiv Detail & Related papers (2024-04-18T10:12:18Z) - A Survey on Knowledge Distillation of Large Language Models [99.11900233108487]
Knowledge Distillation (KD) emerges as a pivotal methodology for transferring advanced capabilities to open-source models.
This paper presents a comprehensive survey of KD's role within the realm of Large Language Models (LLMs)
arXiv Detail & Related papers (2024-02-20T16:17:37Z) - The Participatory Turn in AI Design: Theoretical Foundations and the
Current State of Practice [64.29355073494125]
This article aims to ground what we dub the "participatory turn" in AI design by synthesizing existing theoretical literature on participation.
We articulate empirical findings concerning the current state of participatory practice in AI design based on an analysis of recently published research and semi-structured interviews with 12 AI researchers and practitioners.
arXiv Detail & Related papers (2023-10-02T05:30:42Z) - Investigating Bi-Level Optimization for Learning and Vision from a
Unified Perspective: A Survey and Beyond [114.39616146985001]
In machine learning and computer vision fields, despite the different motivations and mechanisms, a lot of complex problems contain a series of closely related subproblms.
In this paper, we first uniformly express these complex learning and vision problems from the perspective of Bi-Level Optimization (BLO)
Then we construct a value-function-based single-level reformulation and establish a unified algorithmic framework to understand and formulate mainstream gradient-based BLO methodologies.
arXiv Detail & Related papers (2021-01-27T16:20:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.