Bayesian frequency estimation at the fundamental quantum limit
- URL: http://arxiv.org/abs/2507.02811v2
- Date: Tue, 29 Jul 2025 01:47:12 GMT
- Title: Bayesian frequency estimation at the fundamental quantum limit
- Authors: James W. Gardner, Tuvia Gefen, Ethan Payne, Su Direkci, Sander M. Vermeulen, Simon A. Haine, Joseph J. Hope, Lee McCuller, Yanbei Chen,
- Abstract summary: We show that a quadrature measurement can be beaten by a coherent protocol of projecting onto the "quantum whitened" possible quantum states.<n> Quantum whitening is a covariant measurement, and we examine it analytically in the wide-prior limit and numerically for finite-width priors.
- Score: 8.32805126711427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Searching for a weak signal at an unknown frequency is a canonical task in experiments probing fundamental physics such as gravitational-wave observatories and ultra-light dark matter haloscopes. These state-of-the-art sensors are limited by quantum noise arising from the fundamental uncertainty about the state of the device. Classically, frequency estimation suffers from a threshold effect in the signal-to-noise ratio such that weak signals are extremely hard to localise in frequency. We show that this phenomenon persists at the fundamental quantum limit but that the classical approach, a quadrature measurement, can nevertheless be beaten by a coherent protocol of projecting onto the "quantum whitened" possible quantum states. Quantum whitening is a covariant measurement, and we examine it analytically in the wide-prior limit and numerically for finite-width priors. Beyond accelerating searches for unknown frequencies, quantum whitening may be used generally to sense the parameter of a unitary encoding given no prior information about the parameter.
Related papers
- Enhanced quantum frequency estimation by nonlinear scrambling [41.94295877935867]
We show that dynamically encoding an unknown frequency in a nonlinear quantum electromagnetic field can significantly improve frequency estimation.<n>We quantify this effect using the Wigner-Yanase skew information, which measures the degree of noncommutativity in the Hamiltonian structure.
arXiv Detail & Related papers (2025-03-03T19:00:01Z) - Realizing fracton order from long-range quantum entanglement in programmable Rydberg atom arrays [45.19832622389592]
Storing quantum information requires battling quantum decoherence, which results in a loss of information over time.
To achieve error-resistant quantum memory, one would like to store the information in a quantum superposition of degenerate states engineered in such a way that local sources of noise cannot change one state into another.
We show that this platform also allows to detect and correct certain types of errors en route to the goal of true error-resistant quantum memory.
arXiv Detail & Related papers (2024-07-08T12:46:08Z) - Stochastic waveform estimation at the fundamental quantum limit [9.313319759875116]
We derive the fundamental precision limit, the extended channel quantum Cram'er-Rao bound, and the optimal protocol that attains it.
We discuss how this non-Gaussian protocol could improve searches for quantum gravity, gravitational waves, and axionic dark matter.
arXiv Detail & Related papers (2024-04-22T04:31:56Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Retrieving non-linear features from noisy quantum states [11.289924445850328]
In this paper, we analyze the feasibility and efficiency of extracting high-order moments from noisy states.
We first show that there exists a quantum protocol capable of accomplishing this task if and only if the underlying noise channel is invertible.
Our work contributes to a deeper understanding of how quantum noise could affect high-order information extraction and provides guidance on how to tackle it.
arXiv Detail & Related papers (2023-09-20T15:28:18Z) - Simple Tests of Quantumness Also Certify Qubits [69.96668065491183]
A test of quantumness is a protocol that allows a classical verifier to certify (only) that a prover is not classical.
We show that tests of quantumness that follow a certain template, which captures recent proposals such as (Kalai et al., 2022) can in fact do much more.
Namely, the same protocols can be used for certifying a qubit, a building-block that stands at the heart of applications such as certifiable randomness and classical delegation of quantum computation.
arXiv Detail & Related papers (2023-03-02T14:18:17Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Noiseless linear amplification in quantum target detection using
Gaussian states [0.0]
Quantum target detection aims to utilise quantum technologies to achieve performances in target detection not possible through purely classical means.
This paper considers the employment of a noiseless linear amplifier at the detection stage of a quantum illumination-based quantum target detection protocol.
arXiv Detail & Related papers (2022-01-07T14:50:42Z) - Rapid Quantum Squeezing by Jumping the Harmonic Oscillator Frequency [2.229264819097804]
We create squeezed states of atomic motion by sudden changes of the harmonic oscillation frequency of atoms in an optical lattice.
Our results can speed up quantum gates and enable quantum sensing and quantum information processing in noisy environments.
arXiv Detail & Related papers (2021-10-01T08:18:29Z) - Pushing the limits in real-time measurements of quantum dynamics [0.0]
We show that an evaluation scheme based on factorial cumulants can reduce the influence of such errors by orders of magnitude.
The error resilience is supported by a general theory for the detection errors as well as experimental data of single-electron tunnelling through a self-assembled quantum dot.
arXiv Detail & Related papers (2021-06-23T16:21:57Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Classical-noise-free sensing based on quantum correlation measurement [5.334199518329016]
We show that measurement of the quantum correlations of a quantum target indeed allows for sensing schemes that have no classical counterparts.
Finding suggests that the quantumness of sensors and targets is still to be explored to realize the full potential of quantum sensing.
arXiv Detail & Related papers (2020-09-22T10:11:10Z) - Quantum noise protects quantum classifiers against adversaries [120.08771960032033]
Noise in quantum information processing is often viewed as a disruptive and difficult-to-avoid feature, especially in near-term quantum technologies.
We show that by taking advantage of depolarisation noise in quantum circuits for classification, a robustness bound against adversaries can be derived.
This is the first quantum protocol that can be used against the most general adversaries.
arXiv Detail & Related papers (2020-03-20T17:56:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.