Establishing Best Practices for Building Rigorous Agentic Benchmarks
- URL: http://arxiv.org/abs/2507.02825v5
- Date: Thu, 07 Aug 2025 06:58:08 GMT
- Title: Establishing Best Practices for Building Rigorous Agentic Benchmarks
- Authors: Yuxuan Zhu, Tengjun Jin, Yada Pruksachatkun, Andy Zhang, Shu Liu, Sasha Cui, Sayash Kapoor, Shayne Longpre, Kevin Meng, Rebecca Weiss, Fazl Barez, Rahul Gupta, Jwala Dhamala, Jacob Merizian, Mario Giulianelli, Harry Coppock, Cozmin Ududec, Jasjeet Sekhon, Jacob Steinhardt, Antony Kellermann, Sarah Schwettmann, Matei Zaharia, Ion Stoica, Percy Liang, Daniel Kang,
- Abstract summary: We show that many agentic benchmarks have issues in task setup or reward design.<n>Such issues can lead to under- or overestimation of agents' performance by up to 100% in relative terms.<n>We introduce the Agentic Benchmark Checklist (ABC), a set of guidelines that we synthesized from our benchmark-building experience.
- Score: 94.69724201080155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Benchmarks are essential for quantitatively tracking progress in AI. As AI agents become increasingly capable, researchers and practitioners have introduced agentic benchmarks to evaluate agents on complex, real-world tasks. These benchmarks typically measure agent capabilities by evaluating task outcomes via specific reward designs. However, we show that many agentic benchmarks have issues in task setup or reward design. For example, SWE-bench Verified uses insufficient test cases, while TAU-bench counts empty responses as successful. Such issues can lead to under- or overestimation of agents' performance by up to 100% in relative terms. To make agentic evaluation rigorous, we introduce the Agentic Benchmark Checklist (ABC), a set of guidelines that we synthesized from our benchmark-building experience, a survey of best practices, and previously reported issues. When applied to CVE-Bench, a benchmark with a particularly complex evaluation design, ABC reduces the performance overestimation by 33%.
Related papers
- AgentRewardBench: Evaluating Automatic Evaluations of Web Agent Trajectories [59.214178488091584]
We propose AgentRewardBench, the first benchmark to assess the effectiveness of LLM judges for evaluating web agents.<n>Using our benchmark, we evaluate 12 LLM judges and find that no single LLM excels across all benchmarks.<n>We also find that the rule-based evaluation used by common benchmarks tends to underreport the success rate of web agents.
arXiv Detail & Related papers (2025-04-11T19:49:22Z) - More than Marketing? On the Information Value of AI Benchmarks for Practitioners [42.73526862595375]
In academia, public benchmarks were generally viewed as suitable measures for capturing research progress.<n>In product and policy, benchmarks were often found to be inadequate for informing substantive decisions.<n>We conclude that effective benchmarks should provide meaningful, real-world evaluations, incorporate domain expertise, and maintain transparency in scope and goals.
arXiv Detail & Related papers (2024-12-07T03:35:39Z) - BetterBench: Assessing AI Benchmarks, Uncovering Issues, and Establishing Best Practices [28.70453947993952]
We develop an assessment framework considering 46 best practices across an AI benchmark's lifecycle and evaluate 24 AI benchmarks against it.
We find that there exist large quality differences and that commonly used benchmarks suffer from significant issues.
arXiv Detail & Related papers (2024-11-20T02:38:24Z) - CORE-Bench: Fostering the Credibility of Published Research Through a Computational Reproducibility Agent Benchmark [11.794931453828974]
CORE-Bench is a benchmark consisting of 270 tasks based on 90 scientific papers across three disciplines (computer science, social science, and medicine)
We provide an evaluation system to measure the accuracy of agents in a fast and parallelizable way.
The best agent achieved an accuracy of 21% on the hardest task, showing the vast scope for improvement in automating routine scientific tasks.
arXiv Detail & Related papers (2024-09-17T17:13:19Z) - AI Agents That Matter [11.794931453828974]
AI agents are an exciting new research direction, and agent development is driven by benchmarks.
There is a narrow focus on accuracy without attention to other metrics.
benchmarking needs of model and downstream developers have been conflated.
Many agent benchmarks have inadequate holdout sets, and sometimes none at all.
arXiv Detail & Related papers (2024-07-01T17:48:14Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Bench is a principled generation benchmark designed to thoroughly evaluate nine distinct capabilities of LMs across 77 diverse tasks.<n>A key feature of the BiGGen Bench is its use of instance-specific evaluation criteria, closely mirroring the nuanced discernment of human evaluation.
arXiv Detail & Related papers (2024-06-09T12:30:30Z) - 360$^\circ$REA: Towards A Reusable Experience Accumulation with 360° Assessment for Multi-Agent System [71.96888731208838]
We argue that a comprehensive evaluation and accumulating experience from evaluation feedback is an effective approach to improving system performance.<n>We propose Reusable Experience Accumulation with 360$circ$ Assessment (360$circ$REA), a hierarchical multi-agent framework inspired by corporate organizational practices.
arXiv Detail & Related papers (2024-04-08T14:43:13Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
We introduce AgentBoard, a pioneering comprehensive benchmark and accompanied open-source evaluation framework tailored to analytical evaluation of LLM agents.<n>AgentBoard offers a fine-grained progress rate metric that captures incremental advancements as well as a comprehensive evaluation toolkit.<n>This not only sheds light on the capabilities and limitations of LLM agents but also propels the interpretability of their performance to the forefront.
arXiv Detail & Related papers (2024-01-24T01:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.