AI Agents That Matter
- URL: http://arxiv.org/abs/2407.01502v1
- Date: Mon, 1 Jul 2024 17:48:14 GMT
- Title: AI Agents That Matter
- Authors: Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir, Arvind Narayanan,
- Abstract summary: AI agents are an exciting new research direction, and agent development is driven by benchmarks.
There is a narrow focus on accuracy without attention to other metrics.
benchmarking needs of model and downstream developers have been conflated.
Many agent benchmarks have inadequate holdout sets, and sometimes none at all.
- Score: 11.794931453828974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI agents are an exciting new research direction, and agent development is driven by benchmarks. Our analysis of current agent benchmarks and evaluation practices reveals several shortcomings that hinder their usefulness in real-world applications. First, there is a narrow focus on accuracy without attention to other metrics. As a result, SOTA agents are needlessly complex and costly, and the community has reached mistaken conclusions about the sources of accuracy gains. Our focus on cost in addition to accuracy motivates the new goal of jointly optimizing the two metrics. We design and implement one such optimization, showing its potential to greatly reduce cost while maintaining accuracy. Second, the benchmarking needs of model and downstream developers have been conflated, making it hard to identify which agent would be best suited for a particular application. Third, many agent benchmarks have inadequate holdout sets, and sometimes none at all. This has led to agents that are fragile because they take shortcuts and overfit to the benchmark in various ways. We prescribe a principled framework for avoiding overfitting. Finally, there is a lack of standardization in evaluation practices, leading to a pervasive lack of reproducibility. We hope that the steps we introduce for addressing these shortcomings will spur the development of agents that are useful in the real world and not just accurate on benchmarks.
Related papers
- PredictaBoard: Benchmarking LLM Score Predictability [50.47497036981544]
Large Language Models (LLMs) often fail unpredictably.
This poses a significant challenge to ensuring their safe deployment.
We present PredictaBoard, a novel collaborative benchmarking framework.
arXiv Detail & Related papers (2025-02-20T10:52:38Z) - More than Marketing? On the Information Value of AI Benchmarks for Practitioners [42.73526862595375]
In academia, public benchmarks were generally viewed as suitable measures for capturing research progress.
In product and policy, benchmarks were often found to be inadequate for informing substantive decisions.
We conclude that effective benchmarks should provide meaningful, real-world evaluations, incorporate domain expertise, and maintain transparency in scope and goals.
arXiv Detail & Related papers (2024-12-07T03:35:39Z) - The BrowserGym Ecosystem for Web Agent Research [151.90034093362343]
BrowserGym ecosystem addresses the growing need for efficient evaluation and benchmarking of web agents.
We conduct the first large-scale, multi-benchmark web agent experiment.
Results highlight a large discrepancy between OpenAI and Anthropic's latests models.
arXiv Detail & Related papers (2024-12-06T23:43:59Z) - Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
We seek to define a criticality framework with both a quantifiable ground truth and a clear significance to users.
We introduce true criticality as the expected drop in reward when an agent deviates from its policy for n consecutive random actions.
We also introduce the concept of proxy criticality, a low-overhead metric that has a statistically monotonic relationship to true criticality.
arXiv Detail & Related papers (2024-09-26T21:00:45Z) - From Grounding to Planning: Benchmarking Bottlenecks in Web Agents [1.6135641587748402]
General web-based agents are increasingly essential for interacting with complex web environments.
Yet their performance in real-world web applications remains poor, yielding extremely low accuracy even with state-of-the-art frontier models.
We sharpen the distinction between the planning and grounding components and conduct a novel analysis by refining experiments on the Mind2Web dataset.
arXiv Detail & Related papers (2024-09-03T14:17:09Z) - Dissecting Adversarial Robustness of Multimodal LM Agents [70.2077308846307]
We manually create 200 targeted adversarial tasks and evaluation scripts in a realistic threat model on top of VisualWebArena.
We find that we can successfully break latest agents that use black-box frontier LMs, including those that perform reflection and tree search.
We also use ARE to rigorously evaluate how the robustness changes as new components are added.
arXiv Detail & Related papers (2024-06-18T17:32:48Z) - AgentQuest: A Modular Benchmark Framework to Measure Progress and Improve LLM Agents [19.439775106707344]
AgentQuest is a framework where benchmarks and metrics are modular and easily through well documented and easy-to-use APIs.
We offer two new evaluation metrics that can reliably track LLM agent progress while solving a task.
We exemplify the utility of the metrics on two use cases wherein we identify common failure points and refine the agent architecture to obtain a significant performance increase.
arXiv Detail & Related papers (2024-04-09T16:01:24Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - A Study of Unsupervised Evaluation Metrics for Practical and Automatic
Domain Adaptation [15.728090002818963]
Unsupervised domain adaptation (UDA) methods facilitate the transfer of models to target domains without labels.
In this paper, we aim to find an evaluation metric capable of assessing the quality of a transferred model without access to target validation labels.
arXiv Detail & Related papers (2023-08-01T05:01:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.