AI Agents That Matter
- URL: http://arxiv.org/abs/2407.01502v1
- Date: Mon, 1 Jul 2024 17:48:14 GMT
- Title: AI Agents That Matter
- Authors: Sayash Kapoor, Benedikt Stroebl, Zachary S. Siegel, Nitya Nadgir, Arvind Narayanan,
- Abstract summary: AI agents are an exciting new research direction, and agent development is driven by benchmarks.
There is a narrow focus on accuracy without attention to other metrics.
benchmarking needs of model and downstream developers have been conflated.
Many agent benchmarks have inadequate holdout sets, and sometimes none at all.
- Score: 11.794931453828974
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI agents are an exciting new research direction, and agent development is driven by benchmarks. Our analysis of current agent benchmarks and evaluation practices reveals several shortcomings that hinder their usefulness in real-world applications. First, there is a narrow focus on accuracy without attention to other metrics. As a result, SOTA agents are needlessly complex and costly, and the community has reached mistaken conclusions about the sources of accuracy gains. Our focus on cost in addition to accuracy motivates the new goal of jointly optimizing the two metrics. We design and implement one such optimization, showing its potential to greatly reduce cost while maintaining accuracy. Second, the benchmarking needs of model and downstream developers have been conflated, making it hard to identify which agent would be best suited for a particular application. Third, many agent benchmarks have inadequate holdout sets, and sometimes none at all. This has led to agents that are fragile because they take shortcuts and overfit to the benchmark in various ways. We prescribe a principled framework for avoiding overfitting. Finally, there is a lack of standardization in evaluation practices, leading to a pervasive lack of reproducibility. We hope that the steps we introduce for addressing these shortcomings will spur the development of agents that are useful in the real world and not just accurate on benchmarks.
Related papers
- Agent-as-a-Judge: Evaluate Agents with Agents [61.33974108405561]
We introduce the Agent-as-a-Judge framework, wherein agentic systems are used to evaluate agentic systems.
This is an organic extension of the LLM-as-a-Judge framework, incorporating agentic features that enable intermediate feedback for the entire task-solving process.
We present DevAI, a new benchmark of 55 realistic automated AI development tasks.
arXiv Detail & Related papers (2024-10-14T17:57:02Z) - Gödel Agent: A Self-Referential Agent Framework for Recursive Self-Improvement [117.94654815220404]
G"odel Agent is a self-evolving framework inspired by the G"odel machine.
G"odel Agent can achieve continuous self-improvement, surpassing manually crafted agents in performance, efficiency, and generalizability.
arXiv Detail & Related papers (2024-10-06T10:49:40Z) - AutoPenBench: Benchmarking Generative Agents for Penetration Testing [42.681170697805726]
This paper introduces AutoPenBench, an open benchmark for evaluating generative agents in automated penetration testing.
We present a comprehensive framework that includes 33 tasks, each representing a vulnerable system that the agent has to attack.
We show the benefits of AutoPenBench by testing two agent architectures: a fully autonomous and a semi-autonomous supporting human interaction.
arXiv Detail & Related papers (2024-10-04T08:24:15Z) - Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
We seek to define a criticality framework with both a quantifiable ground truth and a clear significance to users.
We introduce true criticality as the expected drop in reward when an agent deviates from its policy for n consecutive random actions.
We also introduce the concept of proxy criticality, a low-overhead metric that has a statistically monotonic relationship to true criticality.
arXiv Detail & Related papers (2024-09-26T21:00:45Z) - From Grounding to Planning: Benchmarking Bottlenecks in Web Agents [1.6135641587748402]
General web-based agents are increasingly essential for interacting with complex web environments.
Yet their performance in real-world web applications remains poor, yielding extremely low accuracy even with state-of-the-art frontier models.
We sharpen the distinction between the planning and grounding components and conduct a novel analysis by refining experiments on the Mind2Web dataset.
arXiv Detail & Related papers (2024-09-03T14:17:09Z) - A methodology for comparing and benchmarking quantum devices [0.19116784879310028]
It is first necessary to define the criteria for success: what are the metrics or statistics that are relevant to the problem?
This paper lays out a framework by which any user, developer or researcher can define, articulate and justify the success criteria and associated benchmarks that have been used to solve their problem or make their claim.
arXiv Detail & Related papers (2024-05-14T13:58:53Z) - Are We Really Achieving Better Beyond-Accuracy Performance in Next Basket Recommendation? [57.91114305844153]
Next basket recommendation (NBR) is a special type of sequential recommendation that is increasingly receiving attention.
Recent studies into NBR have found a substantial performance difference between recommending repeat items and explore items.
We propose a plug-and-play two-step repetition-exploration framework that treats repeat items and explores items separately.
arXiv Detail & Related papers (2024-05-02T09:59:35Z) - AgentQuest: A Modular Benchmark Framework to Measure Progress and Improve LLM Agents [19.439775106707344]
AgentQuest is a framework where benchmarks and metrics are modular and easily through well documented and easy-to-use APIs.
We offer two new evaluation metrics that can reliably track LLM agent progress while solving a task.
We exemplify the utility of the metrics on two use cases wherein we identify common failure points and refine the agent architecture to obtain a significant performance increase.
arXiv Detail & Related papers (2024-04-09T16:01:24Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
We propose QualEval, which augments quantitative scalar metrics with automated qualitative evaluation as a vehicle for model improvement.
QualEval uses a powerful LLM reasoner and our novel flexible linear programming solver to generate human-readable insights.
We demonstrate that leveraging its insights, for example, improves the absolute performance of the Llama 2 model by up to 15% points relative.
arXiv Detail & Related papers (2023-11-06T00:21:44Z) - A Study of Unsupervised Evaluation Metrics for Practical and Automatic
Domain Adaptation [15.728090002818963]
Unsupervised domain adaptation (UDA) methods facilitate the transfer of models to target domains without labels.
In this paper, we aim to find an evaluation metric capable of assessing the quality of a transferred model without access to target validation labels.
arXiv Detail & Related papers (2023-08-01T05:01:05Z) - ROSCOE: A Suite of Metrics for Scoring Step-by-Step Reasoning [63.77667876176978]
Large language models show improved downstream task interpretability when prompted to generate step-by-step reasoning to justify their final answers.
These reasoning steps greatly improve model interpretability and verification, but objectively studying their correctness is difficult.
We present ROS, a suite of interpretable, unsupervised automatic scores that improve and extend previous text generation evaluation metrics.
arXiv Detail & Related papers (2022-12-15T15:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.