ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning
- URL: http://arxiv.org/abs/2507.02834v1
- Date: Thu, 03 Jul 2025 17:44:55 GMT
- Title: ExPO: Unlocking Hard Reasoning with Self-Explanation-Guided Reinforcement Learning
- Authors: Ruiyang Zhou, Shuozhe Li, Amy Zhang, Liu Leqi,
- Abstract summary: Reinforcement learning-style post-training improves reasoning by optimizing model outputs based on reward or preference signals.<n> GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier.<n>We propose $textbfSelf-Explanation Policy Optimization (ExPO)$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer.
- Score: 12.83211408922535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advances in large language models have been driven by reinforcement learning (RL)-style post-training, which improves reasoning by optimizing model outputs based on reward or preference signals. GRPO-style approaches implement this by using self-generated samples labeled by an outcome-based verifier. However, these methods depend heavily on the model's initial ability to produce positive samples. They primarily refine what the model already knows (distribution sharpening) rather than enabling the model to solve problems where it initially fails. This limitation is especially problematic in early-stage RL training and on challenging reasoning tasks, where positive samples are unlikely to be generated. To unlock reasoning ability in such settings, the model must explore new reasoning trajectories beyond its current output distribution. Such exploration requires access to sufficiently good positive samples to guide the learning. While expert demonstrations seem like a natural solution, we find that they are often ineffective in RL post-training. Instead, we identify two key properties of effective positive samples: they should (1) be likely under the current policy, and (2) increase the model's likelihood of predicting the correct answer. Based on these insights, we propose $\textbf{Self-Explanation Policy Optimization (ExPO)}$-a simple and modular framework that generates such samples by conditioning on the ground-truth answer. ExPO enables efficient exploration and guides the model to produce reasoning trajectories more aligned with its policy than expert-written CoTs, while ensuring higher quality than its own (incorrect) samples. Experiments show that ExPO improves both learning efficiency and final performance on reasoning benchmarks, surpassing expert-demonstration-based methods in challenging settings such as MATH level-5, where the model initially struggles the most.
Related papers
- Light-IF: Endowing LLMs with Generalizable Reasoning via Preview and Self-Checking for Complex Instruction Following [10.119219532863767]
lazy reasoning during the thinking stage is the primary factor contributing to poor instruction adherence.<n>We propose a comprehensive framework designed to enable rigorous reasoning processes involving preview and self-checking.<n>Our Light-IF-32B model surpasses both larger open-source models such as DeepSeek-R1 and closed-source models like Doubao-1.6.
arXiv Detail & Related papers (2025-08-05T07:42:00Z) - Generalist Reward Models: Found Inside Large Language Models [50.7432354447554]
We show that a powerful reward model is already latently present within any Large Language Models (LLMs) trained via standard next-token prediction.<n>We prove that this endogenous reward is not a reward function learned through offline inverse reinforcement learning.<n>We also prove that subsequent reinforcement learning using this endogenous reward leads to a policy with a provably superior error bound compared to the base model.
arXiv Detail & Related papers (2025-06-29T13:45:54Z) - ReasonGRM: Enhancing Generative Reward Models through Large Reasoning Models [9.30148520355391]
We present ReasonGRM, a three-stage generative reward modeling framework.<n>In the first stage, Zero-RL is used to generate concise, outcome-directed reasoning paths.<n>In the second stage, $Rstar$, which scores reasoning paths based on their generation likelihood.<n>In the final stage, the model is further refined through reinforcement learning to enhance its preference discrimination capabilities.
arXiv Detail & Related papers (2025-06-20T03:10:52Z) - Incentivizing LLMs to Self-Verify Their Answers [20.2584779107763]
Large Language Models (LLMs) have demonstrated remarkable progress in complex reasoning tasks.<n>We propose a framework that incentivizes LLMs to self-verify their own answers.<n>We train our self-verification models based on Qwen2.5-Math-7B and DeepSeek-R1-Distill-Qwen-1.5B.
arXiv Detail & Related papers (2025-06-02T06:54:29Z) - A Minimalist Approach to LLM Reasoning: from Rejection Sampling to Reinforce [68.99924691391048]
We revisit GRPO from a reinforce-like algorithm perspective and analyze its core components.<n>We find that a simple rejection sampling baseline, RAFT, yields competitive performance than GRPO and PPO.<n>Motivated by this insight, we propose Reinforce-Rej, a minimal extension of policy gradient that filters both entirely incorrect and entirely correct samples.
arXiv Detail & Related papers (2025-04-15T16:15:02Z) - The First Few Tokens Are All You Need: An Efficient and Effective Unsupervised Prefix Fine-Tuning Method for Reasoning Models [69.798277882245]
We introduce Unsupervised Prefix Fine-Tuning (UPFT) to enhance large language models' reasoning efficiency.<n>UPFT removes the need for labeled data or exhaustive sampling.<n> Experiments show that UPFT matches the performance of supervised methods.
arXiv Detail & Related papers (2025-03-04T18:56:03Z) - Scalable Best-of-N Selection for Large Language Models via Self-Certainty [65.31658824274894]
Best-of-N selection is a key technique for improving the reasoning performance of Large Language Models.<n>We propose self-certainty, a novel and efficient metric to estimate response quality without requiring external reward models.<n>Our findings establish self-certainty as a practical and efficient way for improving LLM reasoning capabilities.
arXiv Detail & Related papers (2025-02-25T19:08:07Z) - S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
We introduce S$2$R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference.<n>Our results demonstrate that Qwen2.5-math-7B achieves an accuracy improvement from 51.0% to 81.6%, outperforming models trained on an equivalent amount of long-CoT distilled data.
arXiv Detail & Related papers (2025-02-18T13:40:22Z) - Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning [65.2421542320293]
Reasoning abilities are crucial components of general intelligence.<n>Recent advances by proprietary companies, such as o-series models of OpenAI, have made remarkable progress on reasoning tasks.<n>This paper proposes a new RL framework, termed OREAL, to pursue the performance limit that can be achieved through textbfOutcome textbfREwtextbfArd-based reinforcement textbfLearning for mathematical reasoning tasks.
arXiv Detail & Related papers (2025-02-10T18:57:29Z) - Getting More Juice Out of the SFT Data: Reward Learning from Human Demonstration Improves SFT for LLM Alignment [65.15914284008973]
We propose to leverage an Inverse Reinforcement Learning (IRL) technique to simultaneously build an reward model and a policy model.
We show that the proposed algorithms converge to the stationary solutions of the IRL problem.
Our results indicate that it is beneficial to leverage reward learning throughout the entire alignment process.
arXiv Detail & Related papers (2024-05-28T07:11:05Z) - Model Extrapolation Expedites Alignment [135.12769233630362]
We propose a method called ExPO to expedite alignment training with human preferences.<n>We demonstrate that ExPO boosts a DPO model trained with only 20% steps to outperform the fully-trained one.<n>We show that ExPO notably improves existing open-source LLMs on the leading AlpacaEval 2.0 and MT-Bench benchmarks.
arXiv Detail & Related papers (2024-04-25T17:39:50Z) - Learning Off-policy with Model-based Intrinsic Motivation For Active Online Exploration [15.463313629574111]
This paper investigates how to achieve sample-efficient exploration in continuous control tasks.
We introduce an RL algorithm that incorporates a predictive model and off-policy learning elements.
We derive an intrinsic reward without incurring parameters overhead.
arXiv Detail & Related papers (2024-03-31T11:39:11Z) - RAFT: Reward rAnked FineTuning for Generative Foundation Model Alignment [32.752633250862694]
Generative foundation models are susceptible to implicit biases that can arise from extensive unsupervised training data.
We introduce a new framework, Reward rAnked FineTuning, designed to align generative models effectively.
arXiv Detail & Related papers (2023-04-13T18:22:40Z) - InitialGAN: A Language GAN with Completely Random Initialization [7.642043456676739]
Generative Adversarial Networks (GANs) are shown to have potential to tackle the notorious exposure bias problem.
Existing language GANs adopt estimators like REINFORCE or continuous relaxations to model word probabilities.
In this work, we present two techniques to tackle these problems: dropout sampling and fully normalized LSTM.
arXiv Detail & Related papers (2022-08-04T08:56:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.