MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
- URL: http://arxiv.org/abs/2507.02851v1
- Date: Thu, 03 Jul 2025 17:55:43 GMT
- Title: MOTIF: Modular Thinking via Reinforcement Fine-tuning in LLMs
- Authors: Purbesh Mitra, Sennur Ulukus,
- Abstract summary: We propose $textbfMOTIF: Modular Thinking via Reinforcement Finetuning -- an RL training method for generating thinking tokens in multiple rounds.<n>We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks.
- Score: 35.16231062731263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in the reasoning capabilities of large language models (LLMs) show that employing group relative policy optimization (GRPO) algorithm for reinforcement learning (RL) training allows the models to use more thinking/reasoning tokens for generating better responses. However, LLMs can generate only a finite amount of tokens while maintaining attention to the previously generated tokens. This limit, also known as the context size of an LLM, is a bottleneck in LLM reasoning with arbitrarily large number of tokens. To think beyond the limit of context size, an LLM must employ a modular thinking strategy to reason over multiple rounds. In this work, we propose $\textbf{MOTIF: Modular Thinking via Reinforcement Finetuning}$ -- an RL training method for generating thinking tokens in multiple rounds, effectively allowing the model to think with additional context size. We trained the open-source model Qwen2.5-3B-Instruct on GSM8K dataset via parameter efficient fine-tuning and tested its accuracy on MATH500 and AIME2024 benchmarks. Our experiments show 3.8\% and 3.3\% improvements over vanilla GRPO based training in the respective benchmarks. Furthermore, this improvement was achieved with only 15\% of samples, thus demonstrating sample efficiency of MOTIF. Our code and models are available at https://github.com/purbeshmitra/MOTIF and https://huggingface.co/purbeshmitra/MOTIF, respectively.
Related papers
- Token-Efficient RL for LLM Reasoning [0.02488650627593658]
We propose reinforcement learning strategies tailored for reasoning in large language models (LLMs) under strict memory and compute limits.<n>Building on early policy gradient methods with baseline subtraction, we design critic-free methods that operate on a small, informative subset of output tokens.<n>We show that our methods raise accuracy on the SVAMP benchmark from 46% to over 70% and show strong performance on multi-digit multiplication.
arXiv Detail & Related papers (2025-04-29T14:58:43Z) - Self-Training Elicits Concise Reasoning in Large Language Models [23.475414693530965]
Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens.<n>We propose simple fine-tuning methods which leverage self-generated concise reasoning paths.<n>Our method achieves a 30% reduction in output tokens, across five model families on GSM8K and MATH, while maintaining average accuracy.
arXiv Detail & Related papers (2025-02-27T14:14:50Z) - Large Language Diffusion Models [77.02553707673418]
Autoregressive models (ARMs) are widely regarded as the cornerstone of large language models (LLMs)<n>We introduce LLaDA, a diffusion model trained from scratch under the pre-training and supervised fine-tuning paradigm.<n>Across extensive benchmarks, LLaDA demonstrates strong scalability, outperforming our self-constructed ARM baselines.
arXiv Detail & Related papers (2025-02-14T08:23:51Z) - Language Models are Hidden Reasoners: Unlocking Latent Reasoning Capabilities via Self-Rewarding [74.31981011985681]
Large language models (LLMs) have shown impressive capabilities, but still struggle with complex reasoning tasks requiring multiple steps.
We introduce LaTent Reasoning Optimization (LaTRO), a principled framework that formulates reasoning as sampling from a latent distribution.
We validate LaTRO through experiments on GSM8K and ARC-Challenge datasets using multiple model architectures.
arXiv Detail & Related papers (2024-11-06T22:02:30Z) - Aligning Language Models with Demonstrated Feedback [58.834937450242975]
Demonstration ITerated Task Optimization (DITTO) directly aligns language model outputs to a user's demonstrated behaviors.<n>We evaluate DITTO's ability to learn fine-grained style and task alignment across domains such as news articles, emails, and blog posts.
arXiv Detail & Related papers (2024-06-02T23:13:56Z) - Natural Is The Best: Model-Agnostic Code Simplification for Pre-trained Large Language Models [6.646510073473929]
We propose SlimCode, a model-agnostic code simplification solution for Large Language Models.
SlimCode can improve the state-of-the-art technique by 9.46% and 5.15% in terms of MRR and BLEU score on code search and summarization.
arXiv Detail & Related papers (2024-05-18T06:15:52Z) - Fewer is More: Boosting LLM Reasoning with Reinforced Context Pruning [31.110005898556892]
Large Language Models (LLMs) have shown impressive capabilities, yet they still struggle with math reasoning.
We propose CoT-Influx, a novel approach that pushes the boundary of few-shot Chain-of-Thoughts (CoT) learning.
CoT-Influx employs a coarse-to-fine pruner to maximize the input of effective and concise CoT examples.
arXiv Detail & Related papers (2023-12-14T13:03:13Z) - Large Language Model-Aware In-Context Learning for Code Generation [75.68709482932903]
Large language models (LLMs) have shown impressive in-context learning (ICL) ability in code generation.
We propose a novel learning-based selection approach named LAIL (LLM-Aware In-context Learning) for code generation.
arXiv Detail & Related papers (2023-10-15T06:12:58Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z) - Coarse-Tuning Models of Code with Reinforcement Learning Feedback [0.0]
Large Language Models (LLMs) pre-trained on code have emerged as the dominant approach to program synthesis.
We propose RLCF, that further trains a pre-trained LLM via reinforcement learning, using feedback from a grounding function that scores the quality of the code.
arXiv Detail & Related papers (2023-05-25T22:09:08Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.