Bootstrapping Grounded Chain-of-Thought in Multimodal LLMs for Data-Efficient Model Adaptation
- URL: http://arxiv.org/abs/2507.02859v1
- Date: Thu, 03 Jul 2025 17:59:29 GMT
- Title: Bootstrapping Grounded Chain-of-Thought in Multimodal LLMs for Data-Efficient Model Adaptation
- Authors: Jiaer Xia, Bingkui Tong, Yuhang Zang, Rui Shao, Kaiyang Zhou,
- Abstract summary: We show that training an MLLM with Chain-of-Thought (CoT) reasoning data can facilitate model adaptation in specialized vision tasks.<n>We propose Grounded Chain-of-Thought (GCoT), a simple bootstrapping-based approach that aims to inject grounding information into CoT data.<n>We evaluate our approach on five specialized vision tasks, which cover a variety of visual formats.
- Score: 25.283739839182147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in interpreting images using natural language. However, without using large-scale datasets for retraining, these models are difficult to adapt to specialized vision tasks, e.g., chart understanding. This problem is caused by a mismatch between pre-training and downstream datasets: pre-training datasets primarily concentrate on scenes and objects but contain limited information about specialized, non-object images, such as charts and tables. In this paper, we share an interesting finding that training an MLLM with Chain-of-Thought (CoT) reasoning data can facilitate model adaptation in specialized vision tasks, especially under data-limited regimes. However, we identify a critical issue within CoT data distilled from pre-trained MLLMs, i.e., the data often contains multiple factual errors in the reasoning steps. To address the problem, we propose Grounded Chain-of-Thought (GCoT), a simple bootstrapping-based approach that aims to inject grounding information (i.e., bounding boxes) into CoT data, essentially making the reasoning steps more faithful to input images. We evaluate our approach on five specialized vision tasks, which cover a variety of visual formats including charts, tables, receipts, and reports. The results demonstrate that under data-limited regimes our approach significantly improves upon fine-tuning and distillation.
Related papers
- Escaping The Big Data Paradigm in Self-Supervised Representation Learning [2.10796947080293]
We introduce SCOTT, a shallow tokenization architecture compatible with Masked Image Modeling tasks.<n>SCOTT injects convolutional inductive biases into Vision Transformers (ViTs), enhancing their efficacy in small-scale data regimes.<n>We validate our method on three small-size, standard-resoultion, fine-grained datasets: Oxford Flowers-102, Oxford IIIT Pets-37, and ImageNet-100.
arXiv Detail & Related papers (2025-02-25T10:21:49Z) - MAmmoTH-VL: Eliciting Multimodal Reasoning with Instruction Tuning at Scale [66.73529246309033]
multimodal large language models (MLLMs) have shown significant potential in a broad range of multimodal tasks.<n>Existing instruction-tuning datasets only provide phrase-level answers without any intermediate rationales.<n>We introduce a scalable and cost-effective method to construct a large-scale multimodal instruction-tuning dataset with rich intermediate rationales.
arXiv Detail & Related papers (2024-12-06T18:14:24Z) - Web-Scale Visual Entity Recognition: An LLM-Driven Data Approach [56.55633052479446]
Web-scale visual entity recognition presents significant challenges due to the lack of clean, large-scale training data.
We propose a novel methodology to curate such a dataset, leveraging a multimodal large language model (LLM) for label verification, metadata generation, and rationale explanation.
Experiments demonstrate that models trained on this automatically curated data achieve state-of-the-art performance on web-scale visual entity recognition tasks.
arXiv Detail & Related papers (2024-10-31T06:55:24Z) - Advancing Multimodal Large Language Models in Chart Question Answering with Visualization-Referenced Instruction Tuning [1.6570772838074355]
multimodal large language models (MLLMs) exhibit great potential for chart question answering (CQA)
Recent efforts primarily focus on scaling up training datasets through data collection and synthesis.
We propose a visualization-referenced instruction tuning approach to guide the training dataset enhancement and model development.
arXiv Detail & Related papers (2024-07-29T17:04:34Z) - On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
This paper explores the training processes necessary to improve MLLMs' comprehension of charts.
We introduce CHOPINLLM, an MLLM tailored for in-depth chart comprehension.
arXiv Detail & Related papers (2024-07-19T17:58:36Z) - Data Adaptive Traceback for Vision-Language Foundation Models in Image Classification [34.37262622415682]
We propose a new adaptation framework called Data Adaptive Traceback.
Specifically, we utilize a zero-shot-based method to extract the most downstream task-related subset of the pre-training data.
We adopt a pseudo-label-based semi-supervised technique to reuse the pre-training images and a vision-language contrastive learning method to address the confirmation bias issue in semi-supervised learning.
arXiv Detail & Related papers (2024-07-11T18:01:58Z) - All in One and One for All: A Simple yet Effective Method towards Cross-domain Graph Pretraining [18.955565096212183]
Large Language Models (LLMs) have revolutionized the fields of computer vision (CV) and natural language processing (NLP)
One of the most notable advancements of LLMs is that a single model is trained on vast and diverse datasets spanning multiple domains -- a paradigm we term All in One'
arXiv Detail & Related papers (2024-02-15T09:55:39Z) - Data-efficient Large Vision Models through Sequential Autoregression [58.26179273091461]
We develop an efficient, autoregression-based vision model on a limited dataset.
We demonstrate how this model achieves proficiency in a spectrum of visual tasks spanning both high-level and low-level semantic understanding.
Our empirical evaluations underscore the model's agility in adapting to various tasks, heralding a significant reduction in the parameter footprint.
arXiv Detail & Related papers (2024-02-07T13:41:53Z) - An Efficient General-Purpose Modular Vision Model via Multi-Task
Heterogeneous Training [79.78201886156513]
We present a model that can perform multiple vision tasks and can be adapted to other downstream tasks efficiently.
Our approach achieves comparable results to single-task state-of-the-art models and demonstrates strong generalization on downstream tasks.
arXiv Detail & Related papers (2023-06-29T17:59:57Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.