論文の概要: Toward Cyclic A.I. Modelling of Self-Regulated Learning: A Case Study with E-Learning Trace Data
- arxiv url: http://arxiv.org/abs/2507.02913v1
- Date: Wed, 25 Jun 2025 04:47:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-13 12:05:57.514928
- Title: Toward Cyclic A.I. Modelling of Self-Regulated Learning: A Case Study with E-Learning Trace Data
- Title(参考訳): 自己統制学習の周期的A.I.モデリングに向けて:eラーニングトレースデータを用いたケーススタディ
- Authors: Andrew Schwabe, Özgür Akgün, Ella Haig,
- Abstract要約: 学生のSRL活動のモデル化を進めるために,SRLインフォームド・フィーチャをトレースデータに適用する。
これらの特徴により予測精度が向上し,SRLの循環モデリング技術に関するさらなる研究の価値が検証された。
- 参考スコア(独自算出の注目度): 0.45060992929802207
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many e-learning platforms assert their ability or potential to improve students' self-regulated learning (SRL), however the cyclical and undirected nature of SRL theoretical models represent significant challenges for representation within contemporary machine learning frameworks. We apply SRL-informed features to trace data in order to advance modelling of students' SRL activities, to improve predictability and explainability regarding the causal effects of learning in an eLearning environment. We demonstrate that these features improve predictive accuracy and validate the value of further research into cyclic modelling techniques for SRL.
- Abstract(参考訳): 多くのeラーニングプラットフォームは、学生の自己規制学習(SRL)を改善する能力や可能性を主張するが、SRL理論モデルの循環的かつ非指向的な性質は、現代の機械学習フレームワークにおける表現の重要な課題である。
我々は,学習者のSRL活動のモデル化を進めるために,学習の因果効果に関する予測可能性と説明可能性を向上させるために,SRLインフォーマルな特徴をトレースデータに適用した。
これらの特徴により予測精度が向上し,SRLの循環モデリング技術に関するさらなる研究の価値が検証された。
関連論文リスト
- Scaling DRL for Decision Making: A Survey on Data, Network, and Training Budget Strategies [66.83950068218033]
スケーリング法則は、モデルのパラメータとトレーニングデータによって学習のパフォーマンスが向上することを示している。
性能向上の可能性にもかかわらず、スケーリング法則を深層強化学習に統合することは、完全には実現されていない。
本稿では,データ,ネットワーク,トレーニング予算という3次元のスケーリング戦略を体系的に分析することによって,このギャップに対処する。
論文 参考訳(メタデータ) (2025-08-05T08:03:12Z) - Inverse Reinforcement Learning Meets Large Language Model Post-Training: Basics, Advances, and Opportunities [62.05713042908654]
本稿では,逆強化学習(IRL)のレンズによる大規模言語モデル(LLM)のアライメントの進歩について概観する。
我々は、人間のデータからニューラル報酬モデルを構築する必要性を強調し、このパラダイムシフトの形式的および実践的意味について議論する。
論文 参考訳(メタデータ) (2025-07-17T14:22:24Z) - Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning [82.43575191712726]
本稿では,強化学習が推論に与える影響を明らかにするための,きめ細かい分析フレームワークを提案する。
本フレームワークは,RLトレーニングの恩恵を受けると仮定された重要な要素を具体的に調査する。
論文 参考訳(メタデータ) (2025-06-05T07:53:59Z) - On the Mechanism of Reasoning Pattern Selection in Reinforcement Learning for Language Models [17.36077163968198]
検証リワード(RLVR)を用いた強化学習の体系的研究について述べる。
RLVR学習モデルでは,高精度推論パターンが優先的に採用されている。
我々はRLVRの収束とトレーニングのダイナミクスに関する理論的解析を開発する。
論文 参考訳(メタデータ) (2025-06-05T07:17:04Z) - Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining [74.83412846804977]
強化学習(RL)に基づく微調整は、訓練後の言語モデルにおいて重要なステップとなっている。
数理推論のためのRLファインタニングを、スクラッチから完全にトレーニングモデルを用いて体系的にエンドツーエンドに研究する。
論文 参考訳(メタデータ) (2025-04-10T17:15:53Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
本研究では,類似の推論機能を大規模視覚言語モデル(LVLM)にうまく組み込むことができるか検討する。
本稿では,教師付き微調整(SFT)と強化学習(RL)を反復的に活用し,モデル一般化をさらに改善する手法を検討する。
OpenVLThinkerは、MathVista、MathVerse、MathVisionといった挑戦的なベンチマークで一貫して改善された推論性能を示すLVLMである。
論文 参考訳(メタデータ) (2025-03-21T17:52:43Z) - Using Think-Aloud Data to Understand Relations between Self-Regulation
Cycle Characteristics and Student Performance in Intelligent Tutoring Systems [15.239133633467672]
本研究では,学習者のモーメント・バイ・モーメントのパフォーマンスとSRLの挙動について検討する。
本稿では,AI生成した思考情報に基づくSRL行動のラベル付けの実現可能性を示す。
SRLサイクルの進行過程における学生の行動は、後のSRLサイクルの段階よりも、問題解決時のモーメント・バイ・モーメントの正しさが低かった。
論文 参考訳(メタデータ) (2023-12-09T20:36:58Z) - Reinforcement Learning with Partial Parametric Model Knowledge [3.3598755777055374]
我々は,環境の完全無知と完全知識のギャップを埋めるために,継続的制御のための強化学習手法を適用した。
本手法は,モデルフリーRLとモデルベース制御の両方からインスピレーションを得て,PLSPI(Partial Knowledge Least Squares Policy Iteration)を提案する。
論文 参考訳(メタデータ) (2023-04-26T01:04:35Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
RLエージェントの訓練と並行して動作モデルを学ぶことで,実システムからサンプリングしたデータ量を大幅に削減できることを示す。
また、RLトレーニングのバイアスを避けるために、モデルを反復的に更新することが重要であることも示している。
論文 参考訳(メタデータ) (2023-02-14T16:14:39Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Disentangled Representation Learning [46.51815065323667]
Disentangled Representation Learning (DRL) は、観測可能なデータに隠された基礎的要因を表現形式で識別し、切り離すことができるモデルを学習することを目的としている。
我々は、モチベーション、定義、方法論、評価、応用、モデル設計を含む様々な側面からDRLを包括的に調査する。
論文 参考訳(メタデータ) (2022-11-21T18:14:38Z) - POAR: Efficient Policy Optimization via Online Abstract State
Representation Learning [6.171331561029968]
状態表現学習(SRL)は,複雑な感覚データからタスク関連特徴を低次元状態に符号化する。
我々は、SRLの解釈を改善するために、専門家のデモンストレーションを活用するために、ドメイン類似と呼ばれる新しいSRLを導入する。
我々はPOARを実証的に検証し、高次元のタスクを効率的に処理し、スクラッチから直接実生活ロボットの訓練を容易にする。
論文 参考訳(メタデータ) (2021-09-17T16:52:03Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
本稿では,情報理論的MPCとエントロピー正規化RLとの新たな理論的関連性を示す。
バイアスモデルを利用したQ-ラーニングアルゴリズムを開発した。
論文 参考訳(メタデータ) (2019-12-31T00:29:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。