Efficient Certified Reasoning for Binarized Neural Networks
- URL: http://arxiv.org/abs/2507.02916v1
- Date: Wed, 25 Jun 2025 09:27:02 GMT
- Title: Efficient Certified Reasoning for Binarized Neural Networks
- Authors: Jiong Yang, Yong Kiam Tan, Mate Soos, Magnus O. Myreen, Kuldeep S. Meel,
- Abstract summary: Binarized Neural Networks (BNNs) are a type of neural network where each neuron is constrained to a Boolean value.<n>Existing methods for BNN analysis suffer from limited scalability or susceptibility to soundness errors.<n>We present a scalable and trustworthy approach for both qualitative and quantitative verification of BNNs.
- Score: 25.20597060311209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks have emerged as essential components in safety-critical applications -- these use cases demand complex, yet trustworthy computations. Binarized Neural Networks (BNNs) are a type of neural network where each neuron is constrained to a Boolean value; they are particularly well-suited for safety-critical tasks because they retain much of the computational capacities of full-scale (floating-point or quantized) deep neural networks, but remain compatible with satisfiability solvers for qualitative verification and with model counters for quantitative reasoning. However, existing methods for BNN analysis suffer from either limited scalability or susceptibility to soundness errors, which hinders their applicability in real-world scenarios. In this work, we present a scalable and trustworthy approach for both qualitative and quantitative verification of BNNs. Our approach introduces a native representation of BNN constraints in a custom-designed solver for qualitative reasoning, and in an approximate model counter for quantitative reasoning. We further develop specialized proof generation and checking pipelines with native support for BNN constraint reasoning, ensuring trustworthiness for all of our verification results. Empirical evaluations on a BNN robustness verification benchmark suite demonstrate that our certified solving approach achieves a $9\times$ speedup over prior certified CNF and PB-based approaches, and our certified counting approach achieves a $218\times$ speedup over the existing CNF-based baseline. In terms of coverage, our pipeline produces fully certified results for $99\%$ and $86\%$ of the qualitative and quantitative reasoning queries on BNNs, respectively. This is in sharp contrast to the best existing baselines which can fully certify only $62\%$ and $4\%$ of the queries, respectively.
Related papers
- Exact Certification of (Graph) Neural Networks Against Label Poisoning [50.87615167799367]
We introduce an exact certification method for label flipping in Graph Neural Networks (GNNs)<n>We apply our method to certify a broad range of GNN architectures in node classification tasks.<n>Our work presents the first exact certificate to a poisoning attack ever derived for neural networks.
arXiv Detail & Related papers (2024-11-30T17:05:12Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
Quantized neural networks (QNNs) have been developed, with binarized neural networks (BNNs) restricted to binary values as a special case.
This paper presents an automata-theoretic approach to synthesizing BNNs that meet designated properties.
arXiv Detail & Related papers (2023-07-29T06:27:28Z) - Adversarial Robustness Certification for Bayesian Neural Networks [22.71265211510824]
We study the problem of robustness certifying the computation of Bayesian neural networks (BNNs) to adversarial input perturbations.
Our framework is based on weight sampling, integration, and bound propagation techniques, and can be applied to BNNs with a large number of parameters.
arXiv Detail & Related papers (2023-06-23T16:58:25Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification problem involves counting the number of input configurations of a DNN that result in a violation of a safety property.
We propose a novel approach that returns the exact count of violations.
We present experimental results on a set of safety-critical benchmarks.
arXiv Detail & Related papers (2023-01-17T18:32:01Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Robustness of Bayesian Neural Networks to White-Box Adversarial Attacks [55.531896312724555]
Bayesian Networks (BNNs) are robust and adept at handling adversarial attacks by incorporating randomness.
We create our BNN model, called BNN-DenseNet, by fusing Bayesian inference (i.e., variational Bayes) to the DenseNet architecture.
An adversarially-trained BNN outperforms its non-Bayesian, adversarially-trained counterpart in most experiments.
arXiv Detail & Related papers (2021-11-16T16:14:44Z) - Certification of Iterative Predictions in Bayesian Neural Networks [79.15007746660211]
We compute lower bounds for the probability that trajectories of the BNN model reach a given set of states while avoiding a set of unsafe states.
We use the lower bounds in the context of control and reinforcement learning to provide safety certification for given control policies.
arXiv Detail & Related papers (2021-05-21T05:23:57Z) - BDD4BNN: A BDD-based Quantitative Analysis Framework for Binarized
Neural Networks [7.844146033635129]
We study verification problems for Binarized Neural Networks (BNNs), the 1-bit quantization of general real-numbered neural networks.
Our approach is to encode BNNs into Binary Decision Diagrams (BDDs), which is done by exploiting the internal structure of the BNNs.
Based on the encoding, we develop a quantitative verification framework for BNNs where precise and comprehensive analysis of BNNs can be performed.
arXiv Detail & Related papers (2021-03-12T12:02:41Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - Incorporating Interpretable Output Constraints in Bayesian Neural
Networks [34.103445420814644]
Output-Constrained BNN (OC-BNN) is fully consistent with the Bayesian framework for uncertainty quantification.
We demonstrate the efficacy of OC-BNNs on real-world datasets, spanning multiple domains such as healthcare, criminal justice, and credit scoring.
arXiv Detail & Related papers (2020-10-21T13:00:05Z) - Scalable Quantitative Verification For Deep Neural Networks [44.570783946111334]
We propose a test-driven verification framework for deep neural networks (DNNs)
Our technique performs enough tests until soundness of a formal probabilistic property can be proven.
Our work paves the way for verifying properties of distributions captured by real-world deep neural networks, with provable guarantees.
arXiv Detail & Related papers (2020-02-17T09:53:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.