PlaceFM: A Training-free Geospatial Foundation Model of Places
- URL: http://arxiv.org/abs/2507.02921v1
- Date: Wed, 25 Jun 2025 15:10:31 GMT
- Title: PlaceFM: A Training-free Geospatial Foundation Model of Places
- Authors: Mohammad Hashemi, Hossein Amiri, Andreas Zufle,
- Abstract summary: We propose PlaceFM, a spatial foundation model that captures place representations using a training-free graph condensation method.<n>PlaceFM condenses a nationwide POI graph built from integrated Foursquare and OpenStreetMap data in the U.S., generating general-purpose embeddings of places.
- Score: 0.27309692684728604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial structure is central to effective geospatial intelligence systems. While foundation models have shown promise, they often lack the flexibility to reason about places, which are context-rich regions spanning different spatial granularities. We propose PlaceFM, a spatial foundation model that captures place representations using a training-free graph condensation method. PlaceFM condenses a nationwide POI graph built from integrated Foursquare and OpenStreetMap data in the U.S., generating general-purpose embeddings of places. These embeddings can be seamlessly integrated into geolocation data pipelines to support a wide range of downstream tasks. Without requiring pretraining, PlaceFM offers a scalable and adaptable solution for multi-scale geospatial analysis.
Related papers
- GeoDistill: Geometry-Guided Self-Distillation for Weakly Supervised Cross-View Localization [70.65458151146767]
Cross-view localization is crucial for large-scale outdoor applications like autonomous navigation and augmented reality.<n>Existing methods often rely on fully supervised learning, which requires costly ground-truth pose annotations.<n>We propose GeoDistill, a framework that uses teacher-student learning with Field-of-View (FoV)-based masking.
arXiv Detail & Related papers (2025-07-15T03:00:15Z) - Geographical Context Matters: Bridging Fine and Coarse Spatial Information to Enhance Continental Land Cover Mapping [2.9212099078191756]
BRIDGE-LC is a novel deep learning framework that integrates multi-scale geospatial information into the land cover classification process.<n>Our results demonstrate that integrating geospatial information improves land cover mapping performance.
arXiv Detail & Related papers (2025-04-16T17:42:46Z) - LocDiffusion: Identifying Locations on Earth by Diffusing in the Hilbert Space [10.342723428164412]
We propose to leverage diffusion as a mechanism for image geolocalization.<n>To avoid the problematic manifold reprojection step in diffusion, we developed a novel spherical positional encoding-decoding framework.<n>We train a conditional latent diffusion model called LocDiffusion that generates geolocations under the guidance of images.
arXiv Detail & Related papers (2025-03-23T17:15:26Z) - OmniGeo: Towards a Multimodal Large Language Models for Geospatial Artificial Intelligence [51.0456395687016]
multimodal large language models (LLMs) have opened new frontiers in artificial intelligence.<n>We propose a MLLM (OmniGeo) tailored to geospatial applications.<n>By combining the strengths of natural language understanding and spatial reasoning, our model enhances the ability of instruction following and the accuracy of GeoAI systems.
arXiv Detail & Related papers (2025-03-20T16:45:48Z) - GeoJEPA: Towards Eliminating Augmentation- and Sampling Bias in Multimodal Geospatial Learning [0.0]
We present GeoJEPA, a versatile multimodal fusion model for geospatial data built on the self-supervised Joint-Embedding Predictive Architecture.<n>We aim to eliminate the widely accepted augmentation- and sampling biases found in self-supervised geospatial representation learning.<n>The results are multimodal semantic representations of urban regions and map entities that we evaluate both quantitatively and qualitatively.
arXiv Detail & Related papers (2025-02-25T22:03:28Z) - Geolocation with Real Human Gameplay Data: A Large-Scale Dataset and Human-Like Reasoning Framework [59.42946541163632]
We introduce a comprehensive geolocation framework with three key components.<n>GeoComp, a large-scale dataset; GeoCoT, a novel reasoning method; and GeoEval, an evaluation metric.<n>We demonstrate that GeoCoT significantly boosts geolocation accuracy by up to 25% while enhancing interpretability.
arXiv Detail & Related papers (2025-02-19T14:21:25Z) - Enhancing Worldwide Image Geolocation by Ensembling Satellite-Based Ground-Level Attribute Predictors [4.415977307120618]
We examine the challenge of estimating the location of a single ground-level image in the absence of GPS or other location metadata.
We introduce a novel metric, Recall vs Area, which measures the accuracy of estimated distributions of locations.
We then examine an ensembling approach to global-scale image geolocation, which incorporates information from multiple sources.
arXiv Detail & Related papers (2024-07-18T19:15:52Z) - City Foundation Models for Learning General Purpose Representations from OpenStreetMap [16.09047066527081]
We present CityFM, a framework to train a foundation model within a selected geographical area of interest, such as a city.
CityFM relies solely on open data from OpenStreetMap, and produces multimodal representations of entities of different types, spatial, visual, and textual information.
In all the experiments, CityFM achieves performance superior to, or on par with, the baselines.
arXiv Detail & Related papers (2023-10-01T05:55:30Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth.
Existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task.
We propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations.
arXiv Detail & Related papers (2023-09-27T20:54:56Z) - PGL: Prior-Guided Local Self-supervised Learning for 3D Medical Image
Segmentation [87.50205728818601]
We propose a PriorGuided Local (PGL) self-supervised model that learns the region-wise local consistency in the latent feature space.
Our PGL model learns the distinctive representations of local regions, and hence is able to retain structural information.
arXiv Detail & Related papers (2020-11-25T11:03:11Z) - Each Part Matters: Local Patterns Facilitate Cross-view Geo-localization [54.00111565818903]
Cross-view geo-localization is to spot images of the same geographic target from different platforms.
Existing methods usually concentrate on mining the fine-grained feature of the geographic target in the image center.
We introduce a simple and effective deep neural network, called Local Pattern Network (LPN), to take advantage of contextual information.
arXiv Detail & Related papers (2020-08-26T16:06:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.