論文の概要: OBSER: Object-Based Sub-Environment Recognition for Zero-Shot Environmental Inference
- arxiv url: http://arxiv.org/abs/2507.02929v1
- Date: Thu, 26 Jun 2025 05:57:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-13 12:05:57.532986
- Title: OBSER: Object-Based Sub-Environment Recognition for Zero-Shot Environmental Inference
- Title(参考訳): OBSER:ゼロショット環境推論のためのオブジェクトベースサブ環境認識
- Authors: Won-Seok Choi, Dong-Sig Han, Suhyung Choi, Hyeonseo Yang, Byoung-Tak Zhang,
- Abstract要約: 本稿では,サブ環境と構成対象との間に3つの基本的関係を推定する新しいベイズ的枠組みであるオブジェクトベースサブ環境認識(OBSER)フレームワークを提案する。
本稿では,表現のアライメントを示す(epsilon,delta$)統計的分離可能な(EDS)関数を導入することにより,提案フレームワークの有効性を検証する。
- 参考スコア(独自算出の注目度): 18.514809279438914
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present the Object-Based Sub-Environment Recognition (OBSER) framework, a novel Bayesian framework that infers three fundamental relationships between sub-environments and their constituent objects. In the OBSER framework, metric and self-supervised learning models estimate the object distributions of sub-environments on the latent space to compute these measures. Both theoretically and empirically, we validate the proposed framework by introducing the ($\epsilon,\delta$) statistically separable (EDS) function which indicates the alignment of the representation. Our framework reliably performs inference in open-world and photorealistic environments and outperforms scene-based methods in chained retrieval tasks. The OBSER framework enables zero-shot recognition of environments to achieve autonomous environment understanding.
- Abstract(参考訳): 本稿では,サブ環境と構成対象との間に3つの基本的関係を推定する新しいベイズ的枠組みであるオブジェクトベースサブ環境認識(OBSER)フレームワークを提案する。
OBSERフレームワークでは、メトリックおよび自己教師型学習モデルにより、潜在空間上のサブ環境のオブジェクト分布を推定し、これらの測定値を計算する。
理論的にも経験的にも、表現のアライメントを示す(\epsilon,\delta$)統計的分離可能な(EDS)関数を導入して、提案したフレームワークを検証する。
本フレームワークは,オープンワールドおよびフォトリアリスティック環境における推論を確実に実行し,連鎖検索タスクにおけるシーンベース手法よりも優れる。
OBSERフレームワークは環境のゼロショット認識を可能にし、自律的な環境理解を実現する。
関連論文リスト
- Collaborative Perceiver: Elevating Vision-based 3D Object Detection via Local Density-Aware Spatial Occupancy [7.570294108494611]
視覚に基づく鳥眼視(BEV)3次元物体検出は、自律運転において著しく進歩している。
既存の方法では、抽出した物体の特徴を分解して3次元のBEV表現を構築することが多い。
本研究では,空間表現のギャップを埋めるマルチタスク学習フレームワークであるCollaborative Perceiverを導入する。
論文 参考訳(メタデータ) (2025-07-28T21:56:43Z) - EOC-Bench: Can MLLMs Identify, Recall, and Forecast Objects in an Egocentric World? [52.99661576320663]
マルチモーダル・大規模言語モデル(MLLM)は、自我中心の視覚応用において画期的な進歩を遂げた。
EOC-Benchは、動的自我中心のシナリオにおいて、オブジェクト中心の具体的認識を体系的に評価するために設計された革新的なベンチマークである。
EOC-Benchに基づく各種プロプライエタリ,オープンソース,オブジェクトレベルのMLLMの総合評価を行う。
論文 参考訳(メタデータ) (2025-06-05T17:44:12Z) - BoxDreamer: Dreaming Box Corners for Generalizable Object Pose Estimation [58.14071520415005]
本稿では、スパースビュー設定における課題に対処するために、オブジェクトポーズ推定のための汎用RGBベースのアプローチを提案する。
これらの制約を克服するために、オブジェクトのポーズの中間表現としてオブジェクト境界ボックスのコーナーポイントを導入する。
3Dオブジェクトコーナーはスパース入力ビューから確実に復元でき、対象ビューの2Dコーナーポイントは、新しい参照ベースポイントデータセットによって推定される。
論文 参考訳(メタデータ) (2025-04-10T17:58:35Z) - Can foundation models actively gather information in interactive environments to test hypotheses? [56.651636971591536]
隠れた報酬関数に影響を与える要因をモデルが決定しなければならない枠組みを導入する。
自己スループットや推論時間の増加といったアプローチが情報収集効率を向上させるかどうかを検討する。
論文 参考訳(メタデータ) (2024-12-09T12:27:21Z) - Certifiably Robust Policies for Uncertain Parametric Environments [57.2416302384766]
本稿ではパラメータ上の未知分布を持つパラメトリックマルコフ決定プロセス(MDP)に基づくフレームワークを提案する。
パラメータによって誘導される未知のサンプル環境に対するIMDPの学習と解析を行う。
当社のアプローチは,信頼度の高い政策のパフォーマンスに厳密な拘束力をもたらすことを示す。
論文 参考訳(メタデータ) (2024-08-06T10:48:15Z) - Analysis of the Memorization and Generalization Capabilities of AI
Agents: Are Continual Learners Robust? [91.682459306359]
連続学習(CL)では、AIエージェントが動的環境下で非定常データストリームから学習する。
本稿では,過去の知識を維持しつつ,動的環境への堅牢な一般化を実現するための新しいCLフレームワークを提案する。
提案フレームワークの一般化と記憶性能を理論的に解析した。
論文 参考訳(メタデータ) (2023-09-18T21:00:01Z) - Learning Environment-Aware Affordance for 3D Articulated Object
Manipulation under Occlusions [9.400505355134728]
本稿では,オブジェクトレベルの動作可能な事前条件と環境制約の両方を組み込んだ環境対応アベイランスフレームワークを提案する。
本稿では,1つのオクルーダーを含むシーンを学習し,複雑なオクルーダーの組み合わせでシーンに一般化できる新しいコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-14T08:24:32Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
ジェネリックな方法でオブジェクトを発見できるため、教師なしのオブジェクト発見は有望である。
画像から高レベルな意味的特徴を抽出する意味誘導型自己教師学習モデルを設計する。
オブジェクト領域のローカライズのための主成分分析(PCA)を導入する。
論文 参考訳(メタデータ) (2023-07-07T04:03:48Z) - Persistent Homology Meets Object Unity: Object Recognition in Clutter [2.356908851188234]
見えない屋内環境における隠蔽物体の認識は、移動ロボットにとって難しい問題である。
本稿では,深度画像から生成された点雲のための新しい記述子TOPSと,人間の推論にインスパイアされた認識フレームワークTHORを提案する。
THORは両方のデータセットで最先端の手法より優れており、UW-IS Occludedデータセットのすべてのシナリオに対する認識精度が大幅に向上している。
論文 参考訳(メタデータ) (2023-05-05T19:42:39Z) - CPPF++: Uncertainty-Aware Sim2Real Object Pose Estimation by Vote Aggregation [67.12857074801731]
そこで本研究では,シミュレートからリアルなポーズ推定のための新しい手法であるCPPF++を提案する。
投票衝突による課題に対処するため,投票の不確実性をモデル化する新たなアプローチを提案する。
ノイズの多いペアフィルタリング、オンラインアライメント最適化、機能アンサンブルなど、いくつかの革新的なモジュールを組み込んでいます。
論文 参考訳(メタデータ) (2022-11-24T03:27:00Z) - Action-Sufficient State Representation Learning for Control with
Structural Constraints [21.47086290736692]
本稿では,部分的に観測可能な環境に焦点をあて,意思決定に十分な情報を収集する,最小限の状態表現の集合を学習することを提案する。
システム内の変数間の構造的関係のための生成環境モデルを構築し、ASRを特徴付けるための原則的な方法を提案する。
CarRacing と VizDoom の実証実験の結果は,ASR を政策学習に活用する上で,明らかな優位性を示している。
論文 参考訳(メタデータ) (2021-10-12T03:16:26Z) - Inter-class Discrepancy Alignment for Face Recognition [55.578063356210144]
IA(Inter-class DiscrepancyAlignment)という統合フレームワークを提案する。
IDA-DAOは、画像と隣人の相違を考慮した類似度スコアの整合に使用される。
IDA-SSEは、GANで生成された仮想候補画像を導入することで、説得力のあるクラス間隣人を提供できます。
論文 参考訳(メタデータ) (2021-03-02T08:20:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。