Unveiling Privacy Policy Complexity: An Exploratory Study Using Graph Mining, Machine Learning, and Natural Language Processing
- URL: http://arxiv.org/abs/2507.02968v1
- Date: Mon, 30 Jun 2025 14:55:57 GMT
- Title: Unveiling Privacy Policy Complexity: An Exploratory Study Using Graph Mining, Machine Learning, and Natural Language Processing
- Authors: Vijayalakshmi Ramasamy, Seth Barrett, Gokila Dorai, Jessica Zumbach,
- Abstract summary: This study explores the potential of interactive graph visualizations to enhance user understanding of privacy policies.<n>We employ graph mining algorithms to identify key themes, such as User Activity and Device Information.<n>Our findings reveal that graph-based clustering improves policy content interpretability.
- Score: 0.13124513975412253
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Privacy policy documents are often lengthy, complex, and difficult for non-expert users to interpret, leading to a lack of transparency regarding the collection, processing, and sharing of personal data. As concerns over online privacy grow, it is essential to develop automated tools capable of analyzing privacy policies and identifying potential risks. In this study, we explore the potential of interactive graph visualizations to enhance user understanding of privacy policies by representing policy terms as structured graph models. This approach makes complex relationships more accessible and enables users to make informed decisions about their personal data (RQ1). We also employ graph mining algorithms to identify key themes, such as User Activity and Device Information, using dimensionality reduction techniques like t-SNE and PCA to assess clustering effectiveness. Our findings reveal that graph-based clustering improves policy content interpretability. It highlights patterns in user tracking and data sharing, which supports forensic investigations and identifies regulatory non-compliance. This research advances AI-driven tools for auditing privacy policies by integrating interactive visualizations with graph mining. Enhanced transparency fosters accountability and trust.
Related papers
- Privately Learning from Graphs with Applications in Fine-tuning Large Language Models [16.972086279204174]
relational data in sensitive domains such as finance and healthcare often contain private information.
Existing privacy-preserving methods, such as DP-SGD, are not well-suited for relational learning.
We propose a privacy-preserving relational learning pipeline that decouples dependencies in sampled relations during training.
arXiv Detail & Related papers (2024-10-10T18:38:38Z) - Unveiling Privacy Vulnerabilities: Investigating the Role of Structure in Graph Data [17.11821761700748]
This study advances the understanding and protection against privacy risks emanating from network structure.
We develop a novel graph private attribute inference attack, which acts as a pivotal tool for evaluating the potential for privacy leakage through network structures.
Our attack model poses a significant threat to user privacy, and our graph data publishing method successfully achieves the optimal privacy-utility trade-off.
arXiv Detail & Related papers (2024-07-26T07:40:54Z) - Rethinking Privacy in Machine Learning Pipelines from an Information
Flow Control Perspective [16.487545258246932]
Modern machine learning systems use models trained on ever-growing corpora.
metadata such as ownership, access control, or licensing information is ignored during training.
We take an information flow control perspective to describe machine learning systems.
arXiv Detail & Related papers (2023-11-27T13:14:39Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
Data with privacy concerns comes with stringent regulations that frequently prohibited data access and data sharing.
Overcoming these obstacles is key for technological progress in many real-world application scenarios that involve privacy sensitive data.
Differentially private (DP) data publishing provides a compelling solution, where only a sanitized form of the data is publicly released.
arXiv Detail & Related papers (2023-09-27T14:38:16Z) - Independent Distribution Regularization for Private Graph Embedding [55.24441467292359]
Graph embeddings are susceptible to attribute inference attacks, which allow attackers to infer private node attributes from the learned graph embeddings.
To address these concerns, privacy-preserving graph embedding methods have emerged.
We propose a novel approach called Private Variational Graph AutoEncoders (PVGAE) with the aid of independent distribution penalty as a regularization term.
arXiv Detail & Related papers (2023-08-16T13:32:43Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - Privacy-preserving Graph Analytics: Secure Generation and Federated
Learning [72.90158604032194]
We focus on the privacy-preserving analysis of graph data, which provides the crucial capacity to represent rich attributes and relationships.
We discuss two directions, namely privacy-preserving graph generation and federated graph learning, which can jointly enable the collaboration among multiple parties each possessing private graph data.
arXiv Detail & Related papers (2022-06-30T18:26:57Z) - Privacy-Constrained Policies via Mutual Information Regularized Policy Gradients [54.98496284653234]
We consider the task of training a policy that maximizes reward while minimizing disclosure of certain sensitive state variables through the actions.
We solve this problem by introducing a regularizer based on the mutual information between the sensitive state and the actions.
We develop a model-based estimator for optimization of privacy-constrained policies.
arXiv Detail & Related papers (2020-12-30T03:22:35Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
We propose a novel adversarial learning approach by leveraging user interaction data for the Knowledge Graph Completion task.
Our generator is isolated from user interaction data, and serves to improve the performance of the discriminator.
To discover implicit entity preference of users, we design an elaborate collaborative learning algorithms based on graph neural networks.
arXiv Detail & Related papers (2020-03-28T05:47:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.