論文の概要: Rethinking Data Protection in the (Generative) Artificial Intelligence Era
- arxiv url: http://arxiv.org/abs/2507.03034v1
- Date: Thu, 03 Jul 2025 02:45:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.544665
- Title: Rethinking Data Protection in the (Generative) Artificial Intelligence Era
- Title(参考訳): 次世代人工知能時代におけるデータ保護の再考
- Authors: Yiming Li, Shuo Shao, Yu He, Junfeng Guo, Tianwei Zhang, Zhan Qin, Pin-Yu Chen, Michael Backes, Philip Torr, Dacheng Tao, Kui Ren,
- Abstract要約: 現代の(生産的な)AIモデルやシステムに生じる多様な保護ニーズを捉える4段階の分類法を提案する。
当社のフレームワークは、データユーティリティとコントロールのトレードオフに関する構造化された理解を提供し、AIパイプライン全体にわたっています。
- 参考スコア(独自算出の注目度): 115.71019708491386
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The (generative) artificial intelligence (AI) era has profoundly reshaped the meaning and value of data. No longer confined to static content, data now permeates every stage of the AI lifecycle from the training samples that shape model parameters to the prompts and outputs that drive real-world model deployment. This shift renders traditional notions of data protection insufficient, while the boundaries of what needs safeguarding remain poorly defined. Failing to safeguard data in AI systems can inflict societal and individual, underscoring the urgent need to clearly delineate the scope of and rigorously enforce data protection. In this perspective, we propose a four-level taxonomy, including non-usability, privacy preservation, traceability, and deletability, that captures the diverse protection needs arising in modern (generative) AI models and systems. Our framework offers a structured understanding of the trade-offs between data utility and control, spanning the entire AI pipeline, including training datasets, model weights, system prompts, and AI-generated content. We analyze representative technical approaches at each level and reveal regulatory blind spots that leave critical assets exposed. By offering a structured lens to align future AI technologies and governance with trustworthy data practices, we underscore the urgency of rethinking data protection for modern AI techniques and provide timely guidance for developers, researchers, and regulators alike.
- Abstract(参考訳): 人工知能(AI)の時代は、データの意味と価値を大きく変えてきた。
もはや静的コンテンツに限定されないデータは、モデルパラメータを形作るトレーニングサンプルから、現実世界のモデルデプロイメントを駆動するプロンプトとアウトプットまで、AIライフサイクルのすべてのステージに浸透する。
このシフトは、データ保護という従来の概念を不十分なものにしますが、保護が必要なもののバウンダリは未定義のままです。
AIシステムにおけるデータ保護の欠如は、社会的および個人に影響を及ぼし、データ保護の範囲を明確化し、厳格に実施する緊急の必要性を浮き彫りにする。
この観点から、現代の(生成的な)AIモデルやシステムに生じる多様な保護ニーズを捉え、非使用性、プライバシー保護、トレーサビリティ、削除性を含む4段階の分類を提案する。
私たちのフレームワークは、トレーニングデータセット、モデルウェイト、システムプロンプト、AI生成コンテンツを含む、AIパイプライン全体にわたって、データユーティリティとコントロールのトレードオフに関する構造化された理解を提供します。
各レベルの代表的技術的アプローチを分析し、重要な資産を露出させる規制上の盲点を明らかにします。
将来的なAI技術とガバナンスを信頼できるデータプラクティスと整合させる構造化レンズを提供することで、現代のAI技術に対するデータ保護の再考の緊急性を強調し、開発者、研究者、規制当局にもタイムリーなガイダンスを提供します。
関連論文リスト
- Assured Autonomy with Neuro-Symbolic Perception [11.246557832016238]
サイバー物理システム(CPS)にデプロイされる最先端AIモデルの多くは、パターンマッチングである。
セキュリティの保証が限られているため、安全クリティカルなドメインと競合するドメインの信頼性が懸念される。
本稿では,データ駆動型知覚モデルにシンボル構造を付与するパラダイムシフトを提案する。
論文 参考訳(メタデータ) (2025-05-27T15:21:06Z) - Automatic Prompt Optimization Techniques: Exploring the Potential for Synthetic Data Generation [0.0]
医療などの専門分野において、データ取得はプライバシー規制、倫理的配慮、可用性の制限による重大な制約に直面している。
大規模プロンプトベースモデルの出現は、保護されたデータに直接アクセスすることなく、合成データ生成の新しい機会を示す。
PRISMAガイドラインに従って, 自動プロンプト最適化の最近の展開を概観する。
論文 参考訳(メタデータ) (2025-02-05T11:13:03Z) - Technical Report for the Forgotten-by-Design Project: Targeted Obfuscation for Machine Learning [0.03749861135832072]
本稿では、従来のデータ消去手法と対比して、AIシステム内でのRTBF(Right to be Forgotten)の概念について考察する。
Forgotten by Designは,インスタンス固有の難読化技術を統合した,プライバシ保護のための積極的なアプローチである。
CIFAR-10データセットを用いた実験では,モデル精度を維持しながら,少なくとも1桁のプライバシーリスクを低減できることが示されている。
論文 参考訳(メタデータ) (2025-01-20T15:07:59Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
大規模言語モデル(LLM)はAIの進歩の基礎となっている。
LLMは機密情報、偏見情報、著作権情報を記憶し、広めることによってリスクを生じさせる。
機械学習は、これらの懸念を軽減するための最先端のソリューションとして現れます。
論文 参考訳(メタデータ) (2024-03-23T09:26:15Z) - The AI Security Pyramid of Pain [0.18820558426635298]
私たちは、AI固有の脅威を分類し優先順位付けするために、Painのサイバーセキュリティピラミッドに適応するフレームワークであるPainのAIセキュリティピラミッドを紹介します。
このフレームワークは、さまざまなレベルのAI脅威を理解し、対処するための構造化されたアプローチを提供する。
論文 参考訳(メタデータ) (2024-02-16T21:14:11Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Representative & Fair Synthetic Data [68.8204255655161]
公平性制約を自己監督学習プロセスに組み込むためのフレームワークを提示する。
私たちはuci成人国勢調査データセットの代表者および公正版を作成します。
我々は、代表的かつ公正な合成データを将来有望なビルディングブロックとみなし、歴史的世界ではなく、私たちが生きようとしている世界についてアルゴリズムを教える。
論文 参考訳(メタデータ) (2021-04-07T09:19:46Z) - Trustworthy AI [75.99046162669997]
入力データの小さな敵対的変化への脆さ、決定の説明能力、トレーニングデータのバイアスに対処する能力は、最も顕著な制限である。
我々は,AIシステムに対するユーザおよび公的な信頼を高める上での6つの重要な問題に対処するために,信頼に値するAIに関するチュートリアルを提案する。
論文 参考訳(メタデータ) (2020-11-02T20:04:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。