Cautious Next Token Prediction
- URL: http://arxiv.org/abs/2507.03038v2
- Date: Wed, 23 Jul 2025 08:06:29 GMT
- Title: Cautious Next Token Prediction
- Authors: Yizhou Wang, Lingzhi Zhang, Yue Bai, Mang Tik Chiu, Zhengmian Hu, Mingyuan Zhang, Qihua Dong, Yu Yin, Sohrab Amirghodsi, Yun Fu,
- Abstract summary: We propose a new training-free decoding strategy, dubbed as Cautious Next Token Prediction (CNTP)<n>In the decoding process, if the model has comparatively high prediction entropy at a certain step, we sample multiple trials starting from the step independently and stop when encountering any punctuation.<n>We show that our proposed CNTP approach outperforms existing standard decoding strategies consistently by a clear margin.
- Score: 62.74127603725369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Next token prediction paradigm has been prevailing for autoregressive models in the era of LLMs. The current default sampling choice for popular LLMs is temperature scaling together with nucleus sampling to balance diversity and coherence. Nevertheless, such approach leads to inferior performance in various NLP tasks when the model is not certain about testing questions. To this end, we propose a brand new training-free decoding strategy, dubbed as Cautious Next Token Prediction (CNTP). In the decoding process, if the model has comparatively high prediction entropy at a certain step, we sample multiple trials starting from the step independently and stop when encountering any punctuation. Then we select the trial with the lowest perplexity score viewed as the most probable and reliable trial path given the model's capacity. The trial number is negatively correlated with the prediction confidence, i.e., the less confident the model is, the more trials it should sample. This is consistent with human beings' behaviour: when feeling uncertain or unconfident, one tends to think more creatively, exploring multiple thinking paths, to cautiously select the path one feels most confident about. Extensive experiments on both LLMs and MLLMs show that our proposed CNTP approach outperforms existing standard decoding strategies consistently by a clear margin. Moreover, the integration of CNTP with self consistency can further improve over vanilla self consistency. We believe our proposed CNTP has the potential to become one of the default choices for LLM decoding. Code is available at https://github.com/wyzjack/CNTP.
Related papers
- Token Constraint Decoding Improves Robustness on Question Answering for Large Language Models [4.078176555898098]
We introduce and evaluate Token Constraint Decoding (TCD)<n>This simple yet effective inference-time algorithm enforces alignment between token-level predictions to enhance robustness in noisy settings.<n>Our findings establish TCD as a practical, model-agnostic approach for improving reasoning stability under real-world imperfections.
arXiv Detail & Related papers (2025-06-11T05:33:56Z) - Jakiro: Boosting Speculative Decoding with Decoupled Multi-Head via MoE [15.003006630308517]
Speculative decoding (SD) accelerates large language model inference by using a smaller draft model to predict multiple tokens.<n>We propose Jakiro, leveraging Mixture of Experts (MoE), where independent experts generate diverse predictions.<n>Our method significantly boosts prediction accuracy and achieves higher inference speedups.
arXiv Detail & Related papers (2025-02-10T09:24:06Z) - Language Model Cascades: Token-level uncertainty and beyond [65.38515344964647]
Recent advances in language models (LMs) have led to significant improvements in quality on complex NLP tasks.
Cascading offers a simple strategy to achieve more favorable cost-quality tradeoffs.
We show that incorporating token-level uncertainty through learned post-hoc deferral rules can significantly outperform simple aggregation strategies.
arXiv Detail & Related papers (2024-04-15T21:02:48Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - When Does Confidence-Based Cascade Deferral Suffice? [69.28314307469381]
Cascades are a classical strategy to enable inference cost to vary adaptively across samples.
A deferral rule determines whether to invoke the next classifier in the sequence, or to terminate prediction.
Despite being oblivious to the structure of the cascade, confidence-based deferral often works remarkably well in practice.
arXiv Detail & Related papers (2023-07-06T04:13:57Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z) - AvgOut: A Simple Output-Probability Measure to Eliminate Dull Responses [97.50616524350123]
We build dialogue models that are dynamically aware of what utterances or tokens are dull without any feature-engineering.
The first model, MinAvgOut, directly maximizes the diversity score through the output distributions of each batch.
The second model, Label Fine-Tuning (LFT), prepends to the source sequence a label continuously scaled by the diversity score to control the diversity level.
The third model, RL, adopts Reinforcement Learning and treats the diversity score as a reward signal.
arXiv Detail & Related papers (2020-01-15T18:32:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.