Monitoring of Static Fairness
- URL: http://arxiv.org/abs/2507.03048v1
- Date: Thu, 03 Jul 2025 10:20:04 GMT
- Title: Monitoring of Static Fairness
- Authors: Thomas A. Henzinger, Mahyar Karimi, Konstantin Kueffner, Kaushik Mallik,
- Abstract summary: We present a general framework of runtime verification of algorithmic fairness.<n>We introduce a specification language that can model many common algorithmic fairness properties.<n>We show how we can monitor if a bank is fair in giving loans to applicants from different social backgrounds.
- Score: 5.866925594233267
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine-learned systems are in widespread use for making decisions about humans, and it is important that they are fair, i.e., not biased against individuals based on sensitive attributes. We present a general framework of runtime verification of algorithmic fairness for systems whose models are unknown, but are assumed to have a Markov chain structure, with or without full observation of the state space. We introduce a specification language that can model many common algorithmic fairness properties, such as demographic parity, equal opportunity, and social burden. We build monitors that observe a long sequence of events as generated by a given system, and output, after each observation, a quantitative estimate of how fair or biased the system was on that run until that point in time. The estimate is proven to be correct modulo a variable error bound and a given confidence level, where the error bound gets tighter as the observed sequence gets longer. We present two categories of monitoring algorithms, namely ones with a uniform error bound across all time points, and ones with weaker non-uniform, pointwise error bounds at different time points. Our monitoring algorithms use statistical tools that are adapted to suit the dynamic requirements of monitoring and the special needs of the fairness specifications. Using a prototype implementation, we show how we can monitor if a bank is fair in giving loans to applicants from different social backgrounds, and if a college is fair in admitting students while maintaining a reasonable financial burden on the society. In these experiments, our monitors took less than a millisecond to update their verdicts after each observation.
Related papers
- Comprehensive Equity Index (CEI): Definition and Application to Bias Evaluation in Biometrics [47.762333925222926]
We present a novel metric to quantify biased behaviors of machine learning models.
We focus on and apply it to the operational evaluation of face recognition systems.
arXiv Detail & Related papers (2024-09-03T14:19:38Z) - Uncertainty-guided Boundary Learning for Imbalanced Social Event
Detection [64.4350027428928]
We propose a novel uncertainty-guided class imbalance learning framework for imbalanced social event detection tasks.
Our model significantly improves social event representation and classification tasks in almost all classes, especially those uncertain ones.
arXiv Detail & Related papers (2023-10-30T03:32:04Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
One main challenge in time series anomaly detection (TSAD) is the lack of labelled data in many real-life scenarios.
Most of the existing anomaly detection methods focus on learning the normal behaviour of unlabelled time series in an unsupervised manner.
We introduce a novel end-to-end self-supervised ContrAstive Representation Learning approach for time series anomaly detection.
arXiv Detail & Related papers (2023-08-18T04:45:56Z) - Monitoring Algorithmic Fairness under Partial Observations [3.790015813774933]
runtime verification techniques have been introduced to monitor the algorithmic fairness of deployed systems.
Previous monitoring techniques assume full observability of the states of the monitored system.
We extend fairness monitoring to systems modeled as partially observed Markov chains.
arXiv Detail & Related papers (2023-08-01T07:35:54Z) - Monitoring Algorithmic Fairness [3.372200852710289]
We present runtime verification of algorithmic fairness for systems whose models are unknown.
We introduce a specification language that can model many common algorithmic fairness properties.
We show how we can monitor if a bank is fair in giving loans to applicants from different social backgrounds, and if a college is fair in admitting students.
arXiv Detail & Related papers (2023-05-25T12:17:59Z) - Runtime Monitoring of Dynamic Fairness Properties [3.372200852710289]
A machine-learned system that is fair in static decision-making tasks may have biased societal impacts in the long-run.
While existing works try to identify and mitigate long-run biases through smart system design, we introduce techniques for monitoring fairness in real time.
Our goal is to build and deploy a monitor that will continuously observe a long sequence of events generated by the system in the wild.
arXiv Detail & Related papers (2023-05-08T13:32:23Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
We study the relationship between cross-domain learning (CD) and model fairness.
We introduce a benchmark on face and medical images spanning several demographic groups as well as classification and localization tasks.
Our study covers 14 CD approaches alongside three state-of-the-art fairness algorithms and shows how the former can outperform the latter.
arXiv Detail & Related papers (2023-03-25T09:34:05Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Understanding Unfairness in Fraud Detection through Model and Data Bias
Interactions [4.159343412286401]
We argue that algorithmic unfairness stems from interactions between models and biases in the data.
We study a set of hypotheses regarding the fairness-accuracy trade-offs that fairness-blind ML algorithms exhibit under different data bias settings.
arXiv Detail & Related papers (2022-07-13T15:18:30Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - FairCanary: Rapid Continuous Explainable Fairness [8.362098382773265]
We present Quantile Demographic Drift (QDD), a novel model bias quantification metric.
QDD is ideal for continuous monitoring scenarios, does not suffer from the statistical limitations of conventional threshold-based bias metrics.
We incorporate QDD into a continuous model monitoring system, called FairCanary, that reuses existing explanations computed for each individual prediction.
arXiv Detail & Related papers (2021-06-13T17:47:44Z) - An Uncertainty-based Human-in-the-loop System for Industrial Tool Wear
Analysis [68.8204255655161]
We show that uncertainty measures based on Monte-Carlo dropout in the context of a human-in-the-loop system increase the system's transparency and performance.
A simulation study demonstrates that the uncertainty-based human-in-the-loop system increases performance for different levels of human involvement.
arXiv Detail & Related papers (2020-07-14T15:47:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.