LATTE: Latent Trajectory Embedding for Diffusion-Generated Image Detection
- URL: http://arxiv.org/abs/2507.03054v1
- Date: Thu, 03 Jul 2025 12:53:47 GMT
- Title: LATTE: Latent Trajectory Embedding for Diffusion-Generated Image Detection
- Authors: Ana Vasilcoiu, Ivona Najdenkoska, Zeno Geradts, Marcel Worring,
- Abstract summary: LATTE - Latent Trajectory Embedding - is a novel approach that models the evolution of latent embeddings across several denoising timesteps.<n>By modeling the trajectory of such embeddings rather than single-step errors, LATTE captures subtle, discriminative patterns that distinguish real from generated images.
- Score: 11.700935740718675
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid advancement of diffusion-based image generators has made it increasingly difficult to distinguish generated from real images. This can erode trust in digital media, making it critical to develop generalizable detectors for generated images. Recent methods leverage diffusion denoising cues, but mainly focus on single-step reconstruction errors, ignoring the inherent sequential nature of the denoising process. In this work, we propose LATTE - Latent Trajectory Embedding - a novel approach that models the evolution of latent embeddings across several denoising timesteps. By modeling the trajectory of such embeddings rather than single-step errors, LATTE captures subtle, discriminative patterns that distinguish real from generated images. Each latent is refined by employing our latent-visual feature refinement module and aggregated into a unified representation. Afterwards, it is fused with the visual features and finally passed into a lightweight classifier. Our experiments demonstrate that LATTE surpasses the baselines on several established benchmarks, such as GenImage and DiffusionFake. Moreover, it demonstrates strong performance in cross-generator and cross-datasets settings, highlighting the potential of using the trajectory of latent embeddings for generated image detection. The code is available on the following link: https://github.com/AnaMVasilcoiu/LATTE-Diffusion-Detector.
Related papers
- Explainable Synthetic Image Detection through Diffusion Timestep Ensembling [30.298198387824275]
We propose a novel synthetic image detection method that directly utilizes features of intermediately noised images by training an ensemble on multiple noised timesteps.<n>To enhance human comprehension, we introduce a metric-grounded explanation generation and refinement module.<n>Our method achieves state-of-the-art performance with 98.91% and 95.89% detection accuracy on regular and challenging samples respectively.
arXiv Detail & Related papers (2025-03-08T13:04:20Z) - Understanding and Improving Training-Free AI-Generated Image Detections with Vision Foundation Models [68.90917438865078]
Deepfake techniques for facial synthesis and editing pose serious risks for generative models.<n>In this paper, we investigate how detection performance varies across model backbones, types, and datasets.<n>We introduce Contrastive Blur, which enhances performance on facial images, and MINDER, which addresses noise type bias, balancing performance across domains.
arXiv Detail & Related papers (2024-11-28T13:04:45Z) - Time Step Generating: A Universal Synthesized Deepfake Image Detector [0.4488895231267077]
We propose a universal synthetic image detector Time Step Generating (TSG)
TSG does not rely on pre-trained models' reconstructing ability, specific datasets, or sampling algorithms.
We test the proposed TSG on the large-scale GenImage benchmark and it achieves significant improvements in both accuracy and generalizability.
arXiv Detail & Related papers (2024-11-17T09:39:50Z) - StealthDiffusion: Towards Evading Diffusion Forensic Detection through Diffusion Model [62.25424831998405]
StealthDiffusion is a framework that modifies AI-generated images into high-quality, imperceptible adversarial examples.
It is effective in both white-box and black-box settings, transforming AI-generated images into high-quality adversarial forgeries.
arXiv Detail & Related papers (2024-08-11T01:22:29Z) - AEROBLADE: Training-Free Detection of Latent Diffusion Images Using Autoencoder Reconstruction Error [15.46508882889489]
A key enabler for generating high-resolution images with low computational cost has been the development of latent diffusion models (LDMs)
LDMs perform the denoising process in the low-dimensional latent space of a pre-trained autoencoder (AE) instead of the high-dimensional image space.
We propose a novel detection method which exploits an inherent component of LDMs: the AE used to transform images between image and latent space.
arXiv Detail & Related papers (2024-01-31T14:36:49Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Diffusion Noise Feature: Accurate and Fast Generated Image Detection [28.262273539251172]
Generative models have reached an advanced stage where they can produce remarkably realistic images.
Existing image detectors for generated images encounter challenges such as low accuracy and limited generalization.
This paper seeks to address this issue by seeking a representation with strong generalization capabilities to enhance the detection of generated images.
arXiv Detail & Related papers (2023-12-05T10:01:11Z) - DiffiT: Diffusion Vision Transformers for Image Generation [88.08529836125399]
Vision Transformer (ViT) has demonstrated strong modeling capabilities and scalability, especially for recognition tasks.
We study the effectiveness of ViTs in diffusion-based generative learning and propose a new model denoted as Diffusion Vision Transformers (DiffiT)
DiffiT is surprisingly effective in generating high-fidelity images with significantly better parameter efficiency.
arXiv Detail & Related papers (2023-12-04T18:57:01Z) - Denoising Diffusion Models for Plug-and-Play Image Restoration [135.6359475784627]
This paper proposes DiffPIR, which integrates the traditional plug-and-play method into the diffusion sampling framework.
Compared to plug-and-play IR methods that rely on discriminative Gaussian denoisers, DiffPIR is expected to inherit the generative ability of diffusion models.
arXiv Detail & Related papers (2023-05-15T20:24:38Z) - Parents and Children: Distinguishing Multimodal DeepFakes from Natural Images [60.34381768479834]
Recent advancements in diffusion models have enabled the generation of realistic deepfakes from textual prompts in natural language.
We pioneer a systematic study on deepfake detection generated by state-of-the-art diffusion models.
arXiv Detail & Related papers (2023-04-02T10:25:09Z) - DIRE for Diffusion-Generated Image Detection [128.95822613047298]
We propose a novel representation called DIffusion Reconstruction Error (DIRE)
DIRE measures the error between an input image and its reconstruction counterpart by a pre-trained diffusion model.
It provides a hint that DIRE can serve as a bridge to distinguish generated and real images.
arXiv Detail & Related papers (2023-03-16T13:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.