A Inteligência Artificial Generativa no Ecossistema Acadêmico: Uma Análise de Aplicações, Desafios e Oportunidades para a Pesquisa, o Ensino e a Divulgação Científica
- URL: http://arxiv.org/abs/2507.03106v1
- Date: Thu, 03 Jul 2025 18:23:18 GMT
- Title: A Inteligência Artificial Generativa no Ecossistema Acadêmico: Uma Análise de Aplicações, Desafios e Oportunidades para a Pesquisa, o Ensino e a Divulgação Científica
- Authors: Raphael Machado, Rodrigo David, Rodolfo Souza,
- Abstract summary: The rapid and disruptive integration of Generative Artificial Intelligence in higher education is reshaping fundamental academic practices.<n>Main challenges include threats to academic integrity, the risk of algorithmic bias, and the need for robust AI literacy.<n>The future of academia will not be defined by resistance to this technology, but by the ability of institutions and individuals to engage with it critically, ethically, and creatively.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid and disruptive integration of Generative Artificial Intelligence (GenAI) in higher education is reshaping fundamental academic practices. This article presents a comprehensive analysis of the impact of GenAI across three core academic domains: research, teaching, and scientific dissemination. Through a systematic review of recent literature indexed in the Scopus, Web of Science, and IEEEXplore databases, the main applications, benefits, and the profound ethical and governance challenges that are emerging are identified. The analysis reveals that, although GenAI offers significant potential to boost productivity and innovation, its adoption is outpacing the development of mature institutional safeguards. The main challenges include threats to academic integrity, the risk of algorithmic bias, and the need for robust AI literacy. The study is complemented by a case study detailing the development and positioning of a prototype AI assistant for scientific writing, demonstrating a path toward the development of responsible AI tools that augment rather than replace human intellect. It concludes that the integration of GenAI is an irreversible trend. The future of academia will not be defined by resistance to this technology, but by the ability of institutions and individuals to engage with it critically, ethically, and creatively. The article calls for increased interdisciplinary research, the development of clear ethical guidelines, and a focus on critical AI pedagogy as essential skills for the 21st century.
Related papers
- A Review of Generative AI in Computer Science Education: Challenges and Opportunities in Accuracy, Authenticity, and Assessment [2.1891582280781634]
This paper surveys the use of Generative AI tools, such as ChatGPT and Claude, in computer science education.<n>Generative AI raises concerns such as AI hallucinations, error propagation, bias, and blurred lines between AI-assisted and student-authored content.
arXiv Detail & Related papers (2025-06-17T19:20:58Z) - Open and Sustainable AI: challenges, opportunities and the road ahead in the life sciences [50.9036832382286]
We review the increased erosion of trust in AI research outputs, driven by the issues of poor reusability.<n>We discuss the fragmented components of the AI ecosystem and lack of guiding pathways to best support Open and Sustainable AI.<n>Our work connects researchers with relevant AI resources, facilitating the implementation of sustainable, reusable and transparent AI.
arXiv Detail & Related papers (2025-05-22T12:52:34Z) - Enterprise Architecture as a Dynamic Capability for Scalable and Sustainable Generative AI adoption: Bridging Innovation and Governance in Large Organisations [55.2480439325792]
Generative Artificial Intelligence is a powerful new technology with the potential to boost innovation and reshape governance in many industries.<n>However, organisations face major challenges in scaling GenAI, including technology complexity, governance gaps and resource misalignments.<n>This study explores how Enterprise Architecture Management can meet the complex requirements of GenAI adoption within large enterprises.
arXiv Detail & Related papers (2025-05-09T07:41:33Z) - A Conceptual Exploration of Generative AI-Induced Cognitive Dissonance and its Emergence in University-Level Academic Writing [0.0]
This work explores how Generative Artificial Intelligence (GenAI) serves as both a trigger and amplifier of cognitive dissonance (CD)<n>We introduce a hypothetical construct of GenAI-induced CD, illustrating the tension between AI-driven efficiency and the principles of originality, effort, and intellectual ownership.<n>We discuss strategies to mitigate this dissonance, including reflective pedagogy, AI literacy programs, transparency in GenAI use, and discipline-specific task redesigns.
arXiv Detail & Related papers (2025-02-08T21:31:04Z) - Navigating Ethical Challenges in Generative AI-Enhanced Research: The ETHICAL Framework for Responsible Generative AI Use [0.0]
The rapid adoption of generative artificial intelligence (GenAI) in research presents both opportunities and ethical challenges.<n>This paper develops the ETHICAL framework, which is a practical guide for responsible GenAI use in research.
arXiv Detail & Related papers (2024-12-11T05:49:11Z) - From Google Gemini to OpenAI Q* (Q-Star): A Survey of Reshaping the
Generative Artificial Intelligence (AI) Research Landscape [5.852005817069381]
The study critically examined the current state and future trajectory of generative Artificial Intelligence (AI)
It explored how innovations like Google's Gemini and the anticipated OpenAI Q* project are reshaping research priorities and applications across various domains.
The study highlighted the importance of incorporating ethical and human-centric methods in AI development, ensuring alignment with societal norms and welfare.
arXiv Detail & Related papers (2023-12-18T01:11:39Z) - Contra generative AI detection in higher education assessments [0.0]
The rapid advancement and widespread adoption of generative AI, particularly in education, necessitates a reevaluation of traditional academic integrity mechanisms.
We explore the effectiveness, vulnerabilities, and ethical implications of AI detection tools in the context of preserving academic integrity.
This paper advocates for a strategic shift towards robust assessment methods and educational policies that embrace generative AI usage.
arXiv Detail & Related papers (2023-12-08T18:46:44Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
Training large transformers using next-token prediction has given rise to groundbreaking advancements in AI.
While this generative AI approach has produced impressive results, it heavily leans on human supervision.
This strong reliance on human oversight poses a significant hurdle to the advancement of AI innovation.
We propose a novel paradigm termed Exploratory AI (EAI) aimed at autonomously generating high-quality training data.
arXiv Detail & Related papers (2023-10-13T07:03:39Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.