A Conceptual Exploration of Generative AI-Induced Cognitive Dissonance and its Emergence in University-Level Academic Writing
- URL: http://arxiv.org/abs/2502.05698v1
- Date: Sat, 08 Feb 2025 21:31:04 GMT
- Title: A Conceptual Exploration of Generative AI-Induced Cognitive Dissonance and its Emergence in University-Level Academic Writing
- Authors: Carl Errol Seran, Myles Joshua Toledo Tan, Hezerul Abdul Karim, Nouar AlDahoul,
- Abstract summary: This work explores how Generative Artificial Intelligence (GenAI) serves as both a trigger and amplifier of cognitive dissonance (CD)
We introduce a hypothetical construct of GenAI-induced CD, illustrating the tension between AI-driven efficiency and the principles of originality, effort, and intellectual ownership.
We discuss strategies to mitigate this dissonance, including reflective pedagogy, AI literacy programs, transparency in GenAI use, and discipline-specific task redesigns.
- Score: 0.0
- License:
- Abstract: The integration of Generative Artificial Intelligence (GenAI) into university-level academic writing presents both opportunities and challenges, particularly in relation to cognitive dissonance (CD). This work explores how GenAI serves as both a trigger and amplifier of CD, as students navigate ethical concerns, academic integrity, and self-efficacy in their writing practices. By synthesizing empirical evidence and theoretical insights, we introduce a hypothetical construct of GenAI-induced CD, illustrating the psychological tension between AI-driven efficiency and the principles of originality, effort, and intellectual ownership. We further discuss strategies to mitigate this dissonance, including reflective pedagogy, AI literacy programs, transparency in GenAI use, and discipline-specific task redesigns. These approaches reinforce critical engagement with AI, fostering a balanced perspective that integrates technological advancements while safeguarding human creativity and learning. Our findings contribute to ongoing discussions on AI in education, self-regulated learning, and ethical AI use, offering a conceptual framework for institutions to develop guidelines that align AI adoption with academic values.
Related papers
- Technology as uncharted territory: Contextual integrity and the notion of AI as new ethical ground [55.2480439325792]
I argue that efforts to promote responsible and ethical AI can inadvertently contribute to and seemingly legitimize this disregard for established contextual norms.
I question the current narrow prioritization in AI ethics of moral innovation over moral preservation.
arXiv Detail & Related papers (2024-12-06T15:36:13Z) - Aligning Generalisation Between Humans and Machines [74.120848518198]
Recent advances in AI have resulted in technology that can support humans in scientific discovery and decision support but may also disrupt democracies and target individuals.
The responsible use of AI increasingly shows the need for human-AI teaming.
A crucial yet often overlooked aspect of these interactions is the different ways in which humans and machines generalise.
arXiv Detail & Related papers (2024-11-23T18:36:07Z) - AI Literacy for All: Adjustable Interdisciplinary Socio-technical Curriculum [0.8879149917735942]
This paper presents a curriculum, "AI Literacy for All," to promote an interdisciplinary understanding of AI.
The paper presents four pillars of AI literacy: understanding the scope and technical dimensions of AI, learning how to interact with Gen-AI in an informed and responsible way, the socio-technical issues of ethical and responsible AI, and the social and future implications of AI.
arXiv Detail & Related papers (2024-09-02T13:13:53Z) - Shaping Integrity: Why Generative Artificial Intelligence Does Not Have to Undermine Education [0.0]
The paper argues that generative artificial intelligence (GAI) can enhance digital literacy, encourage genuine knowledge construction, and uphold ethical standards in education.
This research highlights the potential of GAI to create enriching, personalized learning environments that prepare students to navigate the complexities of the modern world ethically and effectively.
arXiv Detail & Related papers (2024-07-26T21:07:33Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - A call for embodied AI [1.7544885995294304]
We propose Embodied AI as the next fundamental step in the pursuit of Artificial General Intelligence.
By broadening the scope of Embodied AI, we introduce a theoretical framework based on cognitive architectures.
This framework is aligned with Friston's active inference principle, offering a comprehensive approach to EAI development.
arXiv Detail & Related papers (2024-02-06T09:11:20Z) - Techniques for supercharging academic writing with generative AI [0.0]
This Perspective maps out principles and methods for using generative artificial intelligence (AI) to elevate the quality and efficiency of academic writing.
We introduce a human-AI collaborative framework that delineates the rationale (why), process (how), and nature (what) of AI engagement in writing.
arXiv Detail & Related papers (2023-10-26T04:35:00Z) - Is AI Changing the Rules of Academic Misconduct? An In-depth Look at
Students' Perceptions of 'AI-giarism' [0.0]
This study explores students' perceptions of AI-giarism, an emergent form of academic dishonesty involving AI and plagiarism.
The findings portray a complex landscape of understanding, with clear disapproval for direct AI content generation.
The study provides pivotal insights for academia, policy-making, and the broader integration of AI technology in education.
arXiv Detail & Related papers (2023-06-06T02:22:08Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.