DeepGesture: A conversational gesture synthesis system based on emotions and semantics
- URL: http://arxiv.org/abs/2507.03147v2
- Date: Mon, 14 Jul 2025 05:34:27 GMT
- Title: DeepGesture: A conversational gesture synthesis system based on emotions and semantics
- Authors: Thanh Hoang-Minh,
- Abstract summary: DeepGesture is a diffusion-based gesture synthesis framework.<n>It generates expressive co-speech gestures conditioned on multimodal signals.<n>We show that DeepGesture produces gestures with improved human-likeness and contextual appropriateness.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Along with the explosion of large language models, improvements in speech synthesis, advancements in hardware, and the evolution of computer graphics, the current bottleneck in creating digital humans lies in generating character movements that correspond naturally to text or speech inputs. In this work, we present DeepGesture, a diffusion-based gesture synthesis framework for generating expressive co-speech gestures conditioned on multimodal signals - text, speech, emotion, and seed motion. Built upon the DiffuseStyleGesture model, DeepGesture introduces novel architectural enhancements that improve semantic alignment and emotional expressiveness in generated gestures. Specifically, we integrate fast text transcriptions as semantic conditioning and implement emotion-guided classifier-free diffusion to support controllable gesture generation across affective states. To visualize results, we implement a full rendering pipeline in Unity based on BVH output from the model. Evaluation on the ZeroEGGS dataset shows that DeepGesture produces gestures with improved human-likeness and contextual appropriateness. Our system supports interpolation between emotional states and demonstrates generalization to out-of-distribution speech, including synthetic voices - marking a step forward toward fully multimodal, emotionally aware digital humans. Project page: https://deepgesture.github.io
Related papers
- Text2Lip: Progressive Lip-Synced Talking Face Generation from Text via Viseme-Guided Rendering [53.2204901422631]
Text2Lip is a viseme-centric framework that constructs an interpretable phonetic-visual bridge.<n>We show that Text2Lip outperforms existing approaches in semantic fidelity, visual realism, and modality robustness.
arXiv Detail & Related papers (2025-08-04T12:50:22Z) - Think-Before-Draw: Decomposing Emotion Semantics & Fine-Grained Controllable Expressive Talking Head Generation [7.362433184546492]
Emotional talking-head generation has emerged as a pivotal research area at the intersection of computer vision and multimodal artificial intelligence.<n>This study proposes the Think-Before-Draw framework to address two key challenges.
arXiv Detail & Related papers (2025-07-17T03:33:46Z) - SignAligner: Harmonizing Complementary Pose Modalities for Coherent Sign Language Generation [41.240893601941536]
We introduce ENIX14T+, an extended version of the widely-used RWTH-ENIXPHO-Weather 2014T dataset, featuring three new sign representations: Pose, Hamer and Smplerx.<n>We also propose a novel method, SignAligner, for realistic sign language generation, consisting of three stages: text-driven pose modalities co-generation, online collaborative correction of multimodality, and realistic sign video synthesis.
arXiv Detail & Related papers (2025-06-13T09:44:42Z) - Cosh-DiT: Co-Speech Gesture Video Synthesis via Hybrid Audio-Visual Diffusion Transformers [58.86974149731874]
Cosh-DiT is a Co-speech gesture video system with hybrid Diffusion Transformers.<n>We introduce an audio Diffusion Transformer to synthesize expressive gesture dynamics synchronized with speech rhythms.<n>For realistic video synthesis conditioned on the generated speech-driven motion, we design a visual Diffusion Transformer.
arXiv Detail & Related papers (2025-03-13T01:36:05Z) - PROEMO: Prompt-Driven Text-to-Speech Synthesis Based on Emotion and Intensity Control [20.873353104077857]
We introduce an approach centered on prompt-based emotion control.<n>The proposed architecture incorporates emotion and intensity control across multi-speakers.<n>We leverage large language models (LLMs) to manipulate speech prosody while preserving linguistic content.
arXiv Detail & Related papers (2025-01-10T12:10:30Z) - When Words Smile: Generating Diverse Emotional Facial Expressions from Text [72.19705878257204]
We introduce an end-to-end text-to-expression model that explicitly focuses on emotional dynamics.<n>Our model learns expressive facial variations in a continuous latent space and generates expressions that are diverse, fluid, and emotionally coherent.
arXiv Detail & Related papers (2024-12-03T15:39:05Z) - ExpGest: Expressive Speaker Generation Using Diffusion Model and Hybrid Audio-Text Guidance [11.207513771079705]
We introduce ExpGest, a novel framework leveraging synchronized text and audio information to generate expressive full-body gestures.
Unlike AdaIN or one-hot encoding methods, we design a noise emotion classifier for optimizing adversarial direction noise.
We show that ExpGest achieves more expressive, natural, and controllable global motion in speakers compared to state-of-the-art models.
arXiv Detail & Related papers (2024-10-12T07:01:17Z) - Speech2UnifiedExpressions: Synchronous Synthesis of Co-Speech Affective Face and Body Expressions from Affordable Inputs [67.27840327499625]
We present a multimodal learning-based method to simultaneously synthesize co-speech facial expressions and upper-body gestures for digital characters.
Our approach learns from sparse face landmarks and upper-body joints, estimated directly from video data, to generate plausible emotive character motions.
arXiv Detail & Related papers (2024-06-26T04:53:11Z) - Semantic Gesticulator: Semantics-Aware Co-Speech Gesture Synthesis [25.822870767380685]
We present Semantic Gesticulator, a framework designed to synthesize realistic gestures with strong semantic correspondence.
Our system demonstrates robustness in generating gestures that are rhythmically coherent and semantically explicit.
Our system outperforms state-of-the-art systems in terms of semantic appropriateness by a clear margin.
arXiv Detail & Related papers (2024-05-16T05:09:01Z) - Dynamic Typography: Bringing Text to Life via Video Diffusion Prior [73.72522617586593]
We present an automated text animation scheme, termed "Dynamic Typography"
It deforms letters to convey semantic meaning and infuses them with vibrant movements based on user prompts.
Our technique harnesses vector graphics representations and an end-to-end optimization-based framework.
arXiv Detail & Related papers (2024-04-17T17:59:55Z) - Emotional Speech-driven 3D Body Animation via Disentangled Latent Diffusion [45.081371413693425]
Existing methods for synthesizing 3D human gestures from speech have shown promising results.
We present AMUSE, an emotional speech-driven body animation model based on latent diffusion.
arXiv Detail & Related papers (2023-12-07T17:39:25Z) - Weakly-Supervised Emotion Transition Learning for Diverse 3D Co-speech Gesture Generation [43.04371187071256]
We present a novel method to generate vivid and emotional 3D co-speech gestures in 3D avatars.
We use the ChatGPT-4 and an audio inpainting approach to construct the high-fidelity emotion transition human speeches.
Our method outperforms the state-of-the-art models constructed by adapting single emotion-conditioned counterparts.
arXiv Detail & Related papers (2023-11-29T11:10:40Z) - Audio-Driven Co-Speech Gesture Video Generation [92.15661971086746]
We define and study this challenging problem of audio-driven co-speech gesture video generation.
Our key insight is that the co-speech gestures can be decomposed into common motion patterns and subtle rhythmic dynamics.
We propose a novel framework, Audio-driveN Gesture vIdeo gEneration (ANGIE), to effectively capture the reusable co-speech gesture patterns.
arXiv Detail & Related papers (2022-12-05T15:28:22Z) - Learning Hierarchical Cross-Modal Association for Co-Speech Gesture
Generation [107.10239561664496]
We propose a novel framework named Hierarchical Audio-to-Gesture (HA2G) for co-speech gesture generation.
The proposed method renders realistic co-speech gestures and outperforms previous methods in a clear margin.
arXiv Detail & Related papers (2022-03-24T16:33:29Z) - Gesticulator: A framework for semantically-aware speech-driven gesture
generation [17.284154896176553]
We present a model designed to produce arbitrary beat and semantic gestures together.
Our deep-learning based model takes both acoustic and semantic representations of speech as input, and generates gestures as a sequence of joint angle rotations as output.
The resulting gestures can be applied to both virtual agents and humanoid robots.
arXiv Detail & Related papers (2020-01-25T14:42:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.