Adversarial Manipulation of Reasoning Models using Internal Representations
- URL: http://arxiv.org/abs/2507.03167v1
- Date: Thu, 03 Jul 2025 20:51:32 GMT
- Title: Adversarial Manipulation of Reasoning Models using Internal Representations
- Authors: Kureha Yamaguchi, Benjamin Etheridge, Andy Arditi,
- Abstract summary: We identify a linear direction in activation space during CoT token generation that predicts whether the model will refuse or comply.<n>We show that intervening only on CoT token activations suffices to control final outputs, and that incorporating this direction into prompt-based attacks improves success rates.<n>Our findings suggest that the chain-of-thought itself is a promising new target for adversarial manipulation in reasoning models.
- Score: 1.024113475677323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Reasoning models generate chain-of-thought (CoT) tokens before their final output, but how this affects their vulnerability to jailbreak attacks remains unclear. While traditional language models make refusal decisions at the prompt-response boundary, we find evidence that DeepSeek-R1-Distill-Llama-8B makes these decisions within its CoT generation. We identify a linear direction in activation space during CoT token generation that predicts whether the model will refuse or comply -- termed the "caution" direction because it corresponds to cautious reasoning patterns in the generated text. Ablating this direction from model activations increases harmful compliance, effectively jailbreaking the model. We additionally show that intervening only on CoT token activations suffices to control final outputs, and that incorporating this direction into prompt-based attacks improves success rates. Our findings suggest that the chain-of-thought itself is a promising new target for adversarial manipulation in reasoning models. Code available at https://github.com/ky295/reasoning-manipulation
Related papers
- Thought Crime: Backdoors and Emergent Misalignment in Reasoning Models [1.6639438555897186]
We finetune reasoning models on malicious behaviors with Chain-of-Thought disabled, and then re-enable CoT at evaluation.<n>We find that reasoning models can often describe and explain their backdoor triggers, demonstrating a kind of self-awareness.
arXiv Detail & Related papers (2025-06-16T08:10:04Z) - On Reasoning Strength Planning in Large Reasoning Models [50.61816666920207]
We find evidence that LRMs pre-plan the reasoning strengths in their activations even before generation.<n>We then uncover that LRMs encode this reasoning strength through a pre-allocated directional vector embedded in the activations of the model.<n>Our work provides new insights into the internal mechanisms of reasoning in LRMs and offers practical tools for controlling their reasoning behaviors.
arXiv Detail & Related papers (2025-06-10T02:55:13Z) - Large language models can learn and generalize steganographic chain-of-thought under process supervision [5.173324198381261]
Chain-of-thought (CoT) reasoning provides insights into decision-making processes.<n>CoT monitoring can be used to reduce risks associated with deploying models.<n>We show that penalizing the use of specific strings within load-bearing reasoning traces causes models to substitute alternative strings.
arXiv Detail & Related papers (2025-06-02T17:45:15Z) - Mitigating Deceptive Alignment via Self-Monitoring [15.365589693661823]
We develop a framework that embeds a Self-Monitor inside the chain-of-thought process itself, named CoT Monitor+.<n>During generation, the model produces (i) ordinary reasoning steps and (ii) an internal self-evaluation signal trained to flag and suppress misaligned strategies.<n>The signal is used as an auxiliary reward in reinforcement learning, creating a feedback loop that rewards honest reasoning and discourages hidden goals.
arXiv Detail & Related papers (2025-05-24T17:41:47Z) - Towards Model Resistant to Transferable Adversarial Examples via Trigger Activation [95.3977252782181]
Adversarial examples, characterized by imperceptible perturbations, pose significant threats to deep neural networks by misleading their predictions.<n>We introduce a novel training paradigm aimed at enhancing robustness against transferable adversarial examples (TAEs) in a more efficient and effective way.
arXiv Detail & Related papers (2025-04-20T09:07:10Z) - Turning Logic Against Itself : Probing Model Defenses Through Contrastive Questions [51.51850981481236]
We introduce POATE, a novel jailbreak technique that harnesses contrastive reasoning to provoke unethical responses.<n>PoATE crafts semantically opposing intents and integrates them with adversarial templates, steering models toward harmful outputs with remarkable subtlety.<n>To counter this, we propose Intent-Aware CoT and Reverse Thinking CoT, which decompose queries to detect malicious intent and reason in reverse to evaluate and reject harmful responses.
arXiv Detail & Related papers (2025-01-03T15:40:03Z) - Steering Without Side Effects: Improving Post-Deployment Control of Language Models [61.99293520621248]
Language models (LMs) have been shown to behave unexpectedly post-deployment.
We present KL-then-steer (KTS), a technique that decreases the side effects of steering while retaining its benefits.
Our best method prevents 44% of jailbreak attacks compared to the original Llama-2-chat-7B model.
arXiv Detail & Related papers (2024-06-21T01:37:39Z) - Refusal in Language Models Is Mediated by a Single Direction [4.532520427311685]
We show that refusal is mediated by a one-dimensional subspace, across 13 popular open-source chat models up to 72B parameters in size.
We propose a novel white-box jailbreak method that surgically disables refusal with minimal effect on other capabilities.
arXiv Detail & Related papers (2024-06-17T16:36:12Z) - Navigating the OverKill in Large Language Models [84.62340510027042]
We investigate the factors for overkill by exploring how models handle and determine the safety of queries.
Our findings reveal the presence of shortcuts within models, leading to an over-attention of harmful words like 'kill' and prompts emphasizing safety will exacerbate overkill.
We introduce Self-Contrastive Decoding (Self-CD), a training-free and model-agnostic strategy, to alleviate this phenomenon.
arXiv Detail & Related papers (2024-01-31T07:26:47Z) - Are aligned neural networks adversarially aligned? [93.91072860401856]
adversarial users can construct inputs which circumvent attempts at alignment.
We show that existing NLP-based optimization attacks are insufficiently powerful to reliably attack aligned text models.
We conjecture that improved NLP attacks may demonstrate this same level of adversarial control over text-only models.
arXiv Detail & Related papers (2023-06-26T17:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.