Zero-shot Inexact CAD Model Alignment from a Single Image
- URL: http://arxiv.org/abs/2507.03292v1
- Date: Fri, 04 Jul 2025 04:46:59 GMT
- Title: Zero-shot Inexact CAD Model Alignment from a Single Image
- Authors: Pattaramanee Arsomngern, Sasikarn Khwanmuang, Matthias Nießner, Supasorn Suwajanakorn,
- Abstract summary: A practical approach to infer 3D scene structure from a single image is to retrieve a closely matching 3D model from a database and align it with the object in the image.<n>Existing methods rely on supervised training with images and pose annotations, which limits them to a narrow set of object categories.<n>We propose a weakly supervised 9-DoF alignment method for inexact 3D models that requires no pose annotations and generalizes to unseen categories.
- Score: 53.37898107159792
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: One practical approach to infer 3D scene structure from a single image is to retrieve a closely matching 3D model from a database and align it with the object in the image. Existing methods rely on supervised training with images and pose annotations, which limits them to a narrow set of object categories. To address this, we propose a weakly supervised 9-DoF alignment method for inexact 3D models that requires no pose annotations and generalizes to unseen categories. Our approach derives a novel feature space based on foundation features that ensure multi-view consistency and overcome symmetry ambiguities inherent in foundation features using a self-supervised triplet loss. Additionally, we introduce a texture-invariant pose refinement technique that performs dense alignment in normalized object coordinates, estimated through the enhanced feature space. We conduct extensive evaluations on the real-world ScanNet25k dataset, where our method outperforms SOTA weakly supervised baselines by +4.3% mean alignment accuracy and is the only weakly supervised approach to surpass the supervised ROCA by +2.7%. To assess generalization, we introduce SUN2CAD, a real-world test set with 20 novel object categories, where our method achieves SOTA results without prior training on them.
Related papers
- SelfSplat: Pose-Free and 3D Prior-Free Generalizable 3D Gaussian Splatting [4.121797302827049]
We propose SelfSplat, a novel 3D Gaussian Splatting model designed to perform pose-free and 3D prior-free generalizable 3D reconstruction from unposed multi-view images.<n>Our model addresses these challenges by effectively integrating explicit 3D representations with self-supervised depth and pose estimation techniques.<n>To present the performance of our method, we evaluated it on large-scale real-world datasets, including RealEstate10K, ACID, and DL3DV.
arXiv Detail & Related papers (2024-11-26T08:01:50Z) - Towards Human-Level 3D Relative Pose Estimation: Generalizable, Training-Free, with Single Reference [62.99706119370521]
Humans can easily deduce the relative pose of an unseen object, without label/training, given only a single query-reference image pair.
We propose a novel 3D generalizable relative pose estimation method by elaborating (i) with a 2.5D shape from an RGB-D reference, (ii) with an off-the-shelf differentiable, and (iii) with semantic cues from a pretrained model like DINOv2.
arXiv Detail & Related papers (2024-06-26T16:01:10Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects [55.77542145604758]
FoundationPose is a unified foundation model for 6D object pose estimation and tracking.
Our approach can be instantly applied at test-time to a novel object without fine-tuning.
arXiv Detail & Related papers (2023-12-13T18:28:09Z) - OriCon3D: Effective 3D Object Detection using Orientation and Confidence [0.0]
We propose an advanced methodology for the detection of 3D objects from a single image.
We use a deep convolutional neural network-based 3D object weighted orientation regression paradigm.
Our approach significantly improves the accuracy of 3D object pose determination, surpassing baseline methodologies.
arXiv Detail & Related papers (2023-04-27T19:52:47Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty
Propagation [4.202461384355329]
We propose MonoRUn, a novel 3D object detection framework that learns dense correspondences and geometry in a self-supervised manner.
Our proposed approach outperforms current state-of-the-art methods on KITTI benchmark.
arXiv Detail & Related papers (2021-03-23T15:03:08Z) - IAFA: Instance-aware Feature Aggregation for 3D Object Detection from a
Single Image [37.83574424518901]
3D object detection from a single image is an important task in Autonomous Driving.
We propose an instance-aware approach to aggregate useful information for improving the accuracy of 3D object detection.
arXiv Detail & Related papers (2021-03-05T05:47:52Z) - Monocular 3D Detection with Geometric Constraints Embedding and
Semi-supervised Training [3.8073142980733]
We propose a novel framework for monocular 3D objects detection using only RGB images, called KM3D-Net.
We design a fully convolutional model to predict object keypoints, dimension, and orientation, and then combine these estimations with perspective geometry constraints to compute position attribute.
arXiv Detail & Related papers (2020-09-02T00:51:51Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.