UltraDfeGAN: Detail-Enhancing Generative Adversarial Networks for High-Fidelity Functional Ultrasound Synthesis
- URL: http://arxiv.org/abs/2507.03341v1
- Date: Fri, 04 Jul 2025 07:00:41 GMT
- Title: UltraDfeGAN: Detail-Enhancing Generative Adversarial Networks for High-Fidelity Functional Ultrasound Synthesis
- Authors: Zhuo Li, Xuhang Chen, Shuqiang Wang,
- Abstract summary: This paper explores the use of a generative adversarial network (GAN) framework tailored for fUS image synthesis.<n>The proposed method incorporates architectural enhancements, including feature enhancement modules and techniques, aiming to improve the fidelity and physiological plausibility of generated images.<n>The study evaluates the performance of the framework against existing generative models, demonstrating its capability to produce high-quality fUS images.
- Score: 11.664045852204586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Functional ultrasound (fUS) is a neuroimaging technique known for its high spatiotemporal resolution, enabling non-invasive observation of brain activity through neurovascular coupling. Despite its potential in clinical applications such as neonatal monitoring and intraoperative guidance, the development of fUS faces challenges related to data scarcity and limitations in generating realistic fUS images. This paper explores the use of a generative adversarial network (GAN) framework tailored for fUS image synthesis. The proposed method incorporates architectural enhancements, including feature enhancement modules and normalization techniques, aiming to improve the fidelity and physiological plausibility of generated images. The study evaluates the performance of the framework against existing generative models, demonstrating its capability to produce high-quality fUS images under various experimental conditions. Additionally, the synthesized images are assessed for their utility in downstream tasks, showing improvements in classification accuracy when used for data augmentation. Experimental results are based on publicly available fUS datasets, highlighting the framework's effectiveness in addressing data limitations.
Related papers
- High-Fidelity Functional Ultrasound Reconstruction via A Visual Auto-Regressive Framework [58.07923338080814]
Functional neurotemporal imaging provides exceptional resolution for mapping.<n>However, its practical application is hampered by critical challenges.<n>These include data scarcity, ethical considerations and signal degradation.
arXiv Detail & Related papers (2025-05-23T15:27:17Z) - FundusGAN: A Hierarchical Feature-Aware Generative Framework for High-Fidelity Fundus Image Generation [35.46876389599076]
FundusGAN is a novel hierarchical feature-aware generative framework specifically designed for high-fidelity fundus image synthesis.<n>We show that FundusGAN consistently outperforms state-of-the-art methods across multiple metrics.
arXiv Detail & Related papers (2025-03-22T18:08:07Z) - GAN-Based Architecture for Low-dose Computed Tomography Imaging Denoising [1.0138723409205497]
Generative Adversarial Networks (GANs) have surfaced as a revolutionary element within the domain of low-dose computed tomography (LDCT) imaging.<n>This comprehensive review synthesizes the rapid advancements in GAN-based LDCT denoising techniques.
arXiv Detail & Related papers (2024-11-14T15:26:10Z) - Clinical Evaluation of Medical Image Synthesis: A Case Study in Wireless Capsule Endoscopy [63.39037092484374]
Synthetic Data Generation based on Artificial Intelligence (AI) can transform the way clinical medicine is delivered.<n>This study focuses on the clinical evaluation of medical SDG, with a proof-of-concept investigation on diagnosing Inflammatory Bowel Disease (IBD) using Wireless Capsule Endoscopy (WCE) images.<n>The results show that TIDE-II generates clinically plausible, very realistic WCE images, of improved quality compared to relevant state-of-the-art generative models.
arXiv Detail & Related papers (2024-10-31T19:48:50Z) - Active inference and deep generative modeling for cognitive ultrasound [20.383444113659476]
We show that US imaging systems can be recast as information-seeking agents that engage in reciprocal interactions with their anatomical environment.
Such agents autonomously adapt their transmit-receive sequences to fully personalize imaging and actively maximize information gain in-situ.
We then equip systems with a mechanism to actively reduce uncertainty and maximize diagnostic value across a sequence of experiments.
arXiv Detail & Related papers (2024-10-17T08:09:14Z) - CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
We introduce a self-supervised deep learning architecture to segment catheters in longitudinal ultrasound images.
The network architecture builds upon AiAReSeg, a segmentation transformer built with the Attention in Attention mechanism.
We validated our model on a test dataset, consisting of unseen synthetic data and images collected from silicon aorta phantoms.
arXiv Detail & Related papers (2024-03-21T15:13:36Z) - Ultrasound Image Enhancement using CycleGAN and Perceptual Loss [4.428854369140015]
This work introduces an advanced framework designed to enhance ultrasound images, especially those captured by portable hand-held devices.
We utilize an enhanced generative adversarial network (CycleGAN) model for ultrasound image enhancement across five organ systems.
arXiv Detail & Related papers (2023-12-18T23:21:00Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - This Intestine Does Not Exist: Multiscale Residual Variational
Autoencoder for Realistic Wireless Capsule Endoscopy Image Generation [7.430724826764835]
A novel Variational Autoencoder architecture is proposed, namely "This Intestine Does not Exist" (TIDE)
The proposed architecture comprises multiscale feature extraction convolutional blocks and residual connections, which enable the generation of high-quality and diverse datasets.
Contrary to the current approaches, which are oriented towards the augmentation of the available datasets, this study demonstrates that using TIDE, real WCE datasets can be fully substituted.
arXiv Detail & Related papers (2023-02-04T11:49:38Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
We present a new type of discriminator, the segmentor, to accurately locate the lesions and improve the visual quality of pseudo-healthy images.
We apply the generated images into medical image enhancement and utilize the enhanced results to cope with the low contrast problem.
Comprehensive experiments on the T2 modality of BraTS demonstrate that the proposed method substantially outperforms the state-of-the-art methods.
arXiv Detail & Related papers (2022-03-29T08:41:17Z) - Functional Magnetic Resonance Imaging data augmentation through
conditional ICA [44.483210864902304]
We introduce Conditional Independent Components Analysis (Conditional ICA): a fast functional Magnetic Resonance Imaging (fMRI) data augmentation technique.
We show that Conditional ICA is successful at synthesizing data indistinguishable from observations, and that it yields gains in classification accuracy in brain decoding problems.
arXiv Detail & Related papers (2021-07-11T22:36:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.