FundusGAN: A Hierarchical Feature-Aware Generative Framework for High-Fidelity Fundus Image Generation
- URL: http://arxiv.org/abs/2503.17831v1
- Date: Sat, 22 Mar 2025 18:08:07 GMT
- Title: FundusGAN: A Hierarchical Feature-Aware Generative Framework for High-Fidelity Fundus Image Generation
- Authors: Qingshan Hou, Meng Wang, Peng Cao, Zou Ke, Xiaoli Liu, Huazhu Fu, Osmar R. Zaiane,
- Abstract summary: FundusGAN is a novel hierarchical feature-aware generative framework specifically designed for high-fidelity fundus image synthesis.<n>We show that FundusGAN consistently outperforms state-of-the-art methods across multiple metrics.
- Score: 35.46876389599076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in ophthalmology foundation models such as RetFound have demonstrated remarkable diagnostic capabilities but require massive datasets for effective pre-training, creating significant barriers for development and deployment. To address this critical challenge, we propose FundusGAN, a novel hierarchical feature-aware generative framework specifically designed for high-fidelity fundus image synthesis. Our approach leverages a Feature Pyramid Network within its encoder to comprehensively extract multi-scale information, capturing both large anatomical structures and subtle pathological features. The framework incorporates a modified StyleGAN-based generator with dilated convolutions and strategic upsampling adjustments to preserve critical retinal structures while enhancing pathological detail representation. Comprehensive evaluations on the DDR, DRIVE, and IDRiD datasets demonstrate that FundusGAN consistently outperforms state-of-the-art methods across multiple metrics (SSIM: 0.8863, FID: 54.2, KID: 0.0436 on DDR). Furthermore, disease classification experiments reveal that augmenting training data with FundusGAN-generated images significantly improves diagnostic accuracy across multiple CNN architectures (up to 6.49\% improvement with ResNet50). These results establish FundusGAN as a valuable foundation model component that effectively addresses data scarcity challenges in ophthalmological AI research, enabling more robust and generalizable diagnostic systems while reducing dependency on large-scale clinical data collection.
Related papers
- Causal Disentanglement for Robust Long-tail Medical Image Generation [80.15257897500578]
We propose a novel medical image generation framework, which generates independent pathological and structural features.
We leverage a diffusion model guided by pathological findings to model pathological features, enabling the generation of diverse counterfactual images.
arXiv Detail & Related papers (2025-04-20T01:54:18Z) - Retinal Fundus Multi-Disease Image Classification using Hybrid CNN-Transformer-Ensemble Architectures [0.3277163122167434]
Our research is motivated by the urgent global issue of a large population affected by retinal diseases.
Our primary objective is to develop a comprehensive diagnostic system capable of accurately predicting retinal diseases.
arXiv Detail & Related papers (2025-03-27T12:55:07Z) - A Data-Efficient Pan-Tumor Foundation Model for Oncology CT Interpretation [17.993838581176902]
PASTA is a pan-tumor CT foundation model that achieves state-of-the-art performance on 45 of 46 representative oncology tasks.<n> PASTA-Gen produces a comprehensive dataset of 30,000 CT scans with pixel-level annotated lesions and paired structured reports.
arXiv Detail & Related papers (2025-02-10T05:45:03Z) - GAN-Based Architecture for Low-dose Computed Tomography Imaging Denoising [1.0138723409205497]
Generative Adversarial Networks (GANs) have surfaced as a revolutionary element within the domain of low-dose computed tomography (LDCT) imaging.<n>This comprehensive review synthesizes the rapid advancements in GAN-based LDCT denoising techniques.
arXiv Detail & Related papers (2024-11-14T15:26:10Z) - Towards a Benchmark for Colorectal Cancer Segmentation in Endorectal Ultrasound Videos: Dataset and Model Development [59.74920439478643]
In this paper, we collect and annotated the first benchmark dataset that covers diverse ERUS scenarios.
Our ERUS-10K dataset comprises 77 videos and 10,000 high-resolution annotated frames.
We introduce a benchmark model for colorectal cancer segmentation, named the Adaptive Sparse-context TRansformer (ASTR)
arXiv Detail & Related papers (2024-08-19T15:04:42Z) - Dataset Distillation for Histopathology Image Classification [46.04496989951066]
We introduce a novel dataset distillation algorithm tailored for histopathology image datasets (Histo-DD)
We conduct a comprehensive evaluation of the effectiveness of the proposed algorithm and the generated histopathology samples in both patch-level and slide-level classification tasks.
arXiv Detail & Related papers (2024-08-19T05:53:38Z) - PathLDM: Text conditioned Latent Diffusion Model for Histopathology [62.970593674481414]
We introduce PathLDM, the first text-conditioned Latent Diffusion Model tailored for generating high-quality histopathology images.
Our approach fuses image and textual data to enhance the generation process.
We achieved a SoTA FID score of 7.64 for text-to-image generation on the TCGA-BRCA dataset, significantly outperforming the closest text-conditioned competitor with FID 30.1.
arXiv Detail & Related papers (2023-09-01T22:08:32Z) - Histopathology DatasetGAN: Synthesizing Large-Resolution Histopathology
Datasets [0.0]
Histopathology datasetGAN (HDGAN) is a framework for image generation and segmentation that scales well to large-resolution histopathology images.
We make several adaptations from the original framework, including updating the generative backbone, selectively extracting latent features from the generator, and switching to memory-mapped arrays.
We evaluate HDGAN on a thrombotic microangiopathy high-resolution tile dataset, demonstrating strong performance on the high-resolution image-annotation generation task.
arXiv Detail & Related papers (2022-07-06T14:33:50Z) - MRI to PET Cross-Modality Translation using Globally and Locally Aware GAN (GLA-GAN) for Multi-Modal Diagnosis of Alzheimer's Disease [0.6597195879147557]
generative adversarial networks (GANs) with the ability to synthesize realist images have shown great potential as an alternative to standard data augmentation techniques.<n>We propose a novel end-to-end, globally and locally aware image-to-image translation GAN (GLA-GAN) with a multi-path architecture that enforces both global structural integrity and fidelity to local details.
arXiv Detail & Related papers (2021-08-04T16:38:33Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.