SHNU Multilingual Conversational Speech Recognition System for INTERSPEECH 2025 MLC-SLM Challenge
- URL: http://arxiv.org/abs/2507.03343v2
- Date: Tue, 08 Jul 2025 04:19:38 GMT
- Title: SHNU Multilingual Conversational Speech Recognition System for INTERSPEECH 2025 MLC-SLM Challenge
- Authors: Yuxiang Mei, Yuang Zheng, Dongxing Xu, Yanhua Long,
- Abstract summary: Our system integrates a parallel-speech-encoder architecture with a large language model (LLM) to form a unified multilingual ASR framework.<n>The SHNU-mASR system achieves an overall character/word error rate (CER/WER) of 11.76% on the blind evaluation set of the INTERSPEECH 2025 MLC-SLM Challenge.
- Score: 3.9836024799656053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes SHNU multilingual conversational speech recognition system (SHNU-mASR, team name-"maybe"), submitted to Track 1 of the INTERSPEECH 2025 MLC-SLM Challenge. Our system integrates a parallel-speech-encoder architecture with a large language model (LLM) to form a unified multilingual ASR framework. The parallel-speech-encoder consists of two pre-trained encoders, the Whisper-large-v3 encoder and mHuBERT-147 encoder. Their output embeddings are concatenated and fed into the LLM, enabling the model to leverage complementary acoustic and linguistic knowledge and achieve competitive performance. Moreover, we adopt a tri-stage training strategy to jointly update the low-rank adaptation modules and projector parameters of both the speech encoders and the LLM. In addition, we incorporate an additional language-aware prompt at the LLM input to enhance language-specific text generation. The SHNU-mASR system achieves an overall character/word error rate (CER/WER) of 11.76% on the blind evaluation set of the challenge, outperforming the official MLC-SLM baseline by 8.41 absolute CER/WER, without increasing the baseline training data.
Related papers
- Triple X: A LLM-Based Multilingual Speech Recognition System for the INTERSPEECH2025 MLC-SLM Challenge [24.966911190845817]
This paper describes our Triple X speech recognition system submitted to Task 1 of the Multi-Lingual Conversational Speech Language Modeling (MLC-SLM) Challenge.<n>Our work focuses on optimizing speech recognition accuracy in multilingual conversational scenarios through an innovative encoder-adapter-LLM architecture.
arXiv Detail & Related papers (2025-07-23T07:48:33Z) - Zero-resource Speech Translation and Recognition with LLMs [38.11535502039386]
We propose to leverage a multilingual Large Language Model (LLM) to perform ST and ASR in languages for which the model has never seen paired audio-text data.<n>We achieve this by using a pre-trained multilingual speech encoder, a multilingual LLM, and a lightweight adaptation module that maps the audio representations to the token embedding space of the LLM.
arXiv Detail & Related papers (2024-12-24T17:37:11Z) - Boosting Code-Switching ASR with Mixture of Experts Enhanced Speech-Conditioned LLM [1.3089936156875277]
We introduce a speech-conditioned Large Language Model (LLM) integrated with a Mixture of Experts (MoE) based connector.
We propose an Insertion and Deletion of Interruption Token (IDIT) mechanism for better transfer text generation ability of LLM to speech recognition task.
We also present a connecter with MoE architecture that manages multiple languages efficiently.
arXiv Detail & Related papers (2024-09-24T09:20:22Z) - Large Language Models are Strong Audio-Visual Speech Recognition Learners [53.142635674428874]
Multimodal large language models (MLLMs) have recently become a focal point of research due to their formidable multimodal understanding capabilities.<n>We propose Llama-AVSR, a new MLLM with strong audio-visual speech recognition capabilities.<n>We evaluate our proposed approach on LRS3, the largest public AVSR benchmark, and we achieve new state-of-the-art results for the tasks of ASR and AVSR with a WER of 0.79% and 0.77%, respectively.
arXiv Detail & Related papers (2024-09-18T21:17:27Z) - Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions [68.98811048970963]
We present a pioneering effort to investigate the capability of large language models (LLMs) in transcribing speech in multi-talker environments.<n>We use WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context.<n>Experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios.
arXiv Detail & Related papers (2024-09-13T07:28:28Z) - Blending LLMs into Cascaded Speech Translation: KIT's Offline Speech Translation System for IWSLT 2024 [61.189875635090225]
Large Language Models (LLMs) are currently under exploration for various tasks, including Automatic Speech Recognition (ASR), Machine Translation (MT), and even End-to-End Speech Translation (ST)
arXiv Detail & Related papers (2024-06-24T16:38:17Z) - DiscreteSLU: A Large Language Model with Self-Supervised Discrete Speech Units for Spoken Language Understanding [51.32965203977845]
We propose the use of discrete speech units (DSU) instead of continuous-valued speech encoder outputs.
The proposed model shows robust performance on speech inputs from seen/unseen domains and instruction-following capability in spoken question answering.
Our findings suggest that the ASR task and datasets are not crucial in instruction-tuning for spoken question answering tasks.
arXiv Detail & Related papers (2024-06-13T17:28:13Z) - WavLLM: Towards Robust and Adaptive Speech Large Language Model [93.0773293897888]
We introduce WavLLM, a robust and adaptive speech large language model with dual encoders, and a prompt-aware LoRA weight adapter.
We validate the proposed model on universal speech benchmarks including tasks such as ASR, ST, SV, ER, and also apply it to specialized datasets like Gaokao English listening comprehension set for SQA, and speech Chain-of-Thought (CoT) evaluation set.
arXiv Detail & Related papers (2024-03-31T12:01:32Z) - Connecting Speech Encoder and Large Language Model for ASR [25.660343393359565]
The impressive capability and versatility of large language models (LLMs) have aroused increasing attention in automatic speech recognition (ASR)
This paper presents a comparative study of three commonly used structures as connectors, including fully connected layers, multi-head cross-attention, and Q-Former.
Experiments were performed on the commonly used LibriSpeech, Common Voice, and GigaSpeech datasets.
arXiv Detail & Related papers (2023-09-25T08:57:07Z) - Harnessing the Zero-Shot Power of Instruction-Tuned Large Language Model in End-to-End Speech Recognition [23.172469312225694]
We propose to utilize an instruction-tuned large language model (LLM) for guiding the text generation process in automatic speech recognition (ASR)<n>The proposed model is built on the joint CTC and attention architecture, with the LLM serving as a front-end feature extractor for the decoder.<n> Experimental results show that the proposed LLM-guided model achieves a relative gain of approximately 13% in word error rates across major benchmarks.
arXiv Detail & Related papers (2023-09-19T11:10:50Z) - On decoder-only architecture for speech-to-text and large language model
integration [59.49886892602309]
Speech-LLaMA is a novel approach that effectively incorporates acoustic information into text-based large language models.
We conduct experiments on multilingual speech-to-text translation tasks and demonstrate a significant improvement over strong baselines.
arXiv Detail & Related papers (2023-07-08T06:47:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.