Triple X: A LLM-Based Multilingual Speech Recognition System for the INTERSPEECH2025 MLC-SLM Challenge
- URL: http://arxiv.org/abs/2507.17288v1
- Date: Wed, 23 Jul 2025 07:48:33 GMT
- Title: Triple X: A LLM-Based Multilingual Speech Recognition System for the INTERSPEECH2025 MLC-SLM Challenge
- Authors: Miaomiao Gao, Xiaoxiao Xiang, Yiwen Guo,
- Abstract summary: This paper describes our Triple X speech recognition system submitted to Task 1 of the Multi-Lingual Conversational Speech Language Modeling (MLC-SLM) Challenge.<n>Our work focuses on optimizing speech recognition accuracy in multilingual conversational scenarios through an innovative encoder-adapter-LLM architecture.
- Score: 24.966911190845817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper describes our Triple X speech recognition system submitted to Task 1 of the Multi-Lingual Conversational Speech Language Modeling (MLC-SLM) Challenge. Our work focuses on optimizing speech recognition accuracy in multilingual conversational scenarios through an innovative encoder-adapter-LLM architecture. This framework harnesses the powerful reasoning capabilities of text-based large language models while incorporating domain-specific adaptations. To further enhance multilingual recognition performance, we adopted a meticulously designed multi-stage training strategy leveraging extensive multilingual audio datasets. Experimental results demonstrate that our approach achieves competitive Word Error Rate (WER) performance on both dev and test sets, obtaining second place in the challenge ranking.
Related papers
- The Eloquence team submission for task 1 of MLC-SLM challenge [12.442720957990533]
We present our studies and experiments carried out for the task 1 of the Challenge and Workshop on Multilingual Conversational Speech Language Model (MLC-SLM)<n>This task focuses on advancing multilingual conversational speech recognition through the development of speech language models architectures.
arXiv Detail & Related papers (2025-07-25T14:23:49Z) - Nexus: An Omni-Perceptive And -Interactive Model for Language, Audio, And Vision [50.23246260804145]
This work proposes an industry-level omni-modal large language model (LLM) pipeline that integrates auditory, visual, and linguistic modalities.<n>Our pipeline consists of three main components: First, a modular framework enabling flexible configuration of various encoder-LLM-decoder architectures.<n>Second, a lightweight training strategy that pre-trains audio-language alignment on the state-of-the-art vision-language model Qwen2.5-VL.<n>Third, an audio synthesis pipeline that generates high-quality audio-text data from diverse real-world scenarios.
arXiv Detail & Related papers (2025-02-26T17:26:36Z) - Boosting Code-Switching ASR with Mixture of Experts Enhanced Speech-Conditioned LLM [1.3089936156875277]
We introduce a speech-conditioned Large Language Model (LLM) integrated with a Mixture of Experts (MoE) based connector.
We propose an Insertion and Deletion of Interruption Token (IDIT) mechanism for better transfer text generation ability of LLM to speech recognition task.
We also present a connecter with MoE architecture that manages multiple languages efficiently.
arXiv Detail & Related papers (2024-09-24T09:20:22Z) - Enhancing Multilingual Speech Generation and Recognition Abilities in LLMs with Constructed Code-switched Data [30.966072545451183]
We propose a MutltiLingual MultiTask (MLMT) model, integrating multilingual speech generation and recognition tasks within the single LLM.
We develop an effective data construction approach that splits and equips words from different languages to equip synthesiss with CS ability without relying on CS data.
arXiv Detail & Related papers (2024-09-17T08:11:07Z) - Large Language Model Based Generative Error Correction: A Challenge and Baselines for Speech Recognition, Speaker Tagging, and Emotion Recognition [110.8431434620642]
We introduce the generative speech transcription error correction (GenSEC) challenge.
This challenge comprises three post-ASR language modeling tasks: (i) post-ASR transcription correction, (ii) speaker tagging, and (iii) emotion recognition.
We discuss insights from baseline evaluations, as well as lessons learned for designing future evaluations.
arXiv Detail & Related papers (2024-09-15T16:32:49Z) - Empowering Whisper as a Joint Multi-Talker and Target-Talker Speech Recognition System [73.34663391495616]
We propose a pioneering approach to tackle joint multi-talker and target-talker speech recognition tasks.
Specifically, we freeze Whisper and plug a Sidecar separator into its encoder to separate mixed embedding for multiple talkers.
We deliver acceptable zero-shot performance on multi-talker ASR on AishellMix Mandarin dataset.
arXiv Detail & Related papers (2024-07-13T09:28:24Z) - Teaching a Multilingual Large Language Model to Understand Multilingual Speech via Multi-Instructional Training [29.47243668154796]
BLOOMZMMS is a novel model that integrates a multilingual LLM with a multilingual speech encoder.
We demonstrate the transferability of linguistic knowledge from the text to the speech modality.
Our zero-shot evaluation results confirm the robustness of our approach across multiple tasks.
arXiv Detail & Related papers (2024-04-16T21:45:59Z) - WavLLM: Towards Robust and Adaptive Speech Large Language Model [93.0773293897888]
We introduce WavLLM, a robust and adaptive speech large language model with dual encoders, and a prompt-aware LoRA weight adapter.
We validate the proposed model on universal speech benchmarks including tasks such as ASR, ST, SV, ER, and also apply it to specialized datasets like Gaokao English listening comprehension set for SQA, and speech Chain-of-Thought (CoT) evaluation set.
arXiv Detail & Related papers (2024-03-31T12:01:32Z) - ERNIE-SAT: Speech and Text Joint Pretraining for Cross-Lingual
Multi-Speaker Text-to-Speech [58.93395189153713]
We extend the pretraining method for cross-lingual multi-speaker speech synthesis tasks.
We propose a speech-text joint pretraining framework, where we randomly mask the spectrogram and the phonemes.
Our model shows great improvements over speaker-embedding-based multi-speaker TTS methods.
arXiv Detail & Related papers (2022-11-07T13:35:16Z) - LAE: Language-Aware Encoder for Monolingual and Multilingual ASR [87.74794847245536]
A novel language-aware encoder (LAE) architecture is proposed to handle both situations by disentangling language-specific information.
Experiments conducted on Mandarin-English code-switched speech suggest that the proposed LAE is capable of discriminating different languages in frame-level.
arXiv Detail & Related papers (2022-06-05T04:03:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.