Learning Normals of Noisy Points by Local Gradient-Aware Surface Filtering
- URL: http://arxiv.org/abs/2507.03394v1
- Date: Fri, 04 Jul 2025 08:55:40 GMT
- Title: Learning Normals of Noisy Points by Local Gradient-Aware Surface Filtering
- Authors: Qing Li, Huifang Feng, Xun Gong, Yu-Shen Liu,
- Abstract summary: Estimating normals for noisy point clouds is a persistent challenge in 3D geometry processing.<n>We propose a novel approach for learning normals from noisy point clouds through local gradient-aware surface filtering.<n>Our method projects noisy points onto the underlying surface by utilizing normals and distances derived from an implicit function constrained by local gradients.
- Score: 30.868527375568682
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Estimating normals for noisy point clouds is a persistent challenge in 3D geometry processing, particularly for end-to-end oriented normal estimation. Existing methods generally address relatively clean data and rely on supervised priors to fit local surfaces within specific neighborhoods. In this paper, we propose a novel approach for learning normals from noisy point clouds through local gradient-aware surface filtering. Our method projects noisy points onto the underlying surface by utilizing normals and distances derived from an implicit function constrained by local gradients. We start by introducing a distance measurement operator for global surface fitting on noisy data, which integrates projected distances along normals. Following this, we develop an implicit field-based filtering approach for surface point construction, adding projection constraints on these points during filtering. To address issues of over-smoothing and gradient degradation, we further incorporate local gradient consistency constraints, as well as local gradient orientation and aggregation. Comprehensive experiments on normal estimation, surface reconstruction, and point cloud denoising demonstrate the state-of-the-art performance of our method. The source code and trained models are available at https://github.com/LeoQLi/LGSF.
Related papers
- Implicit Filtering for Learning Neural Signed Distance Functions from 3D Point Clouds [34.774577477968805]
We propose a novel non-linear implicit filter to smooth the implicit field while preserving geometry details.
Our novelty lies in that we can filter the surface (zero level set) by the neighbor input points with gradients of the signed distance field.
By moving the input raw point clouds along the gradient, our proposed implicit filtering can be extended to non-zero level sets.
arXiv Detail & Related papers (2024-07-18T09:40:24Z) - PPSURF: Combining Patches and Point Convolutions for Detailed Surface
Reconstruction [15.843730758485917]
PPSurf is a method that combines a global prior based on point convolutions and a local prior based on processing local point cloud patches.
We show that this approach is robust to noise while recovering surface details more accurately than the current state-of-the-art.
arXiv Detail & Related papers (2024-01-16T17:31:43Z) - NeuralGF: Unsupervised Point Normal Estimation by Learning Neural
Gradient Function [55.86697795177619]
Normal estimation for 3D point clouds is a fundamental task in 3D geometry processing.
We introduce a new paradigm for learning neural gradient functions, which encourages the neural network to fit the input point clouds.
Our excellent results on widely used benchmarks demonstrate that our method can learn more accurate normals for both unoriented and oriented normal estimation tasks.
arXiv Detail & Related papers (2023-11-01T09:25:29Z) - Neural Gradient Learning and Optimization for Oriented Point Normal
Estimation [53.611206368815125]
We propose a deep learning approach to learn gradient vectors with consistent orientation from 3D point clouds for normal estimation.
We learn an angular distance field based on local plane geometry to refine the coarse gradient vectors.
Our method efficiently conducts global gradient approximation while achieving better accuracy and ability generalization of local feature description.
arXiv Detail & Related papers (2023-09-17T08:35:11Z) - Learning Signed Hyper Surfaces for Oriented Point Cloud Normal Estimation [53.19926259132379]
We propose a novel method called SHS-Net for oriented normal estimation of point clouds by learning signed hyper surfaces.
The signed hyper surfaces are implicitly learned in a high-dimensional feature space where the local and global information is aggregated.
An attention-weighted normal prediction module is proposed as a decoder, which takes the local and global latent codes as input to predict oriented normals.
arXiv Detail & Related papers (2023-05-10T03:40:25Z) - Rethinking the Approximation Error in 3D Surface Fitting for Point Cloud
Normal Estimation [39.79759035338819]
We present two basic design principles to bridge the gap between estimated and precise surface normals.
We implement these two principles using deep neural networks, and integrate them with the state-of-the-art (SOTA) normal estimation methods in a plug-and-play manner.
arXiv Detail & Related papers (2023-03-30T05:59:43Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
We present a learning-based method, namely GeoUDF, to tackle the problem of reconstructing a discrete surface from a sparse point cloud.
To be specific, we propose a geometry-guided learning method for UDF and its gradient estimation.
To extract triangle meshes from the predicted UDF, we propose a customized edge-based marching cube module.
arXiv Detail & Related papers (2022-11-30T06:02:01Z) - HSurf-Net: Normal Estimation for 3D Point Clouds by Learning Hyper
Surfaces [54.77683371400133]
We propose a novel normal estimation method called HSurf-Net, which can accurately predict normals from point clouds with noise and density variations.
Experimental results show that our HSurf-Net achieves the state-of-the-art performance on the synthetic shape dataset.
arXiv Detail & Related papers (2022-10-13T16:39:53Z) - PU-Flow: a Point Cloud Upsampling Networkwith Normalizing Flows [58.96306192736593]
We present PU-Flow, which incorporates normalizing flows and feature techniques to produce dense points uniformly distributed on the underlying surface.
Specifically, we formulate the upsampling process as point in a latent space, where the weights are adaptively learned from local geometric context.
We show that our method outperforms state-of-the-art deep learning-based approaches in terms of reconstruction quality, proximity-to-surface accuracy, and computation efficiency.
arXiv Detail & Related papers (2021-07-13T07:45:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.