Leveraging Large Language Models for Tacit Knowledge Discovery in Organizational Contexts
- URL: http://arxiv.org/abs/2507.03811v1
- Date: Fri, 04 Jul 2025 21:09:32 GMT
- Title: Leveraging Large Language Models for Tacit Knowledge Discovery in Organizational Contexts
- Authors: Gianlucca Zuin, Saulo Mastelini, TĂșlio Loures, Adriano Veloso,
- Abstract summary: We propose an agent-based framework to iteratively reconstruct dataset descriptions through interactions with employees.<n>Our results show that the agent achieves 94.9% full-knowledge recall, with self-critical feedback scores strongly correlating with external literature critic scores.<n>These findings highlight the agent's ability to navigate organizational complexity and capture fragmented knowledge that would otherwise remain inaccessible.
- Score: 0.4499833362998487
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Documenting tacit knowledge in organizations can be a challenging task due to incomplete initial information, difficulty in identifying knowledgeable individuals, the interplay of formal hierarchies and informal networks, and the need to ask the right questions. To address this, we propose an agent-based framework leveraging large language models (LLMs) to iteratively reconstruct dataset descriptions through interactions with employees. Modeling knowledge dissemination as a Susceptible-Infectious (SI) process with waning infectivity, we conduct 864 simulations across various synthetic company structures and different dissemination parameters. Our results show that the agent achieves 94.9% full-knowledge recall, with self-critical feedback scores strongly correlating with external literature critic scores. We analyze how each simulation parameter affects the knowledge retrieval process for the agent. In particular, we find that our approach is able to recover information without needing to access directly the only domain specialist. These findings highlight the agent's ability to navigate organizational complexity and capture fragmented knowledge that would otherwise remain inaccessible.
Related papers
- Generic-to-Specific Reasoning and Learning for Scalable Ad Hoc Teamwork [10.462598319732187]
This paper advocates leveraging the complementary strengths of knowledge-based and data-driven methods for reasoning and learning for ad hoc teamwork.<n>For any given goal, our architecture enables each ad hoc agent to determine its actions through non-monotonic logical reasoning.<n>We experimentally evaluate our architecture's capabilities in VirtualHome, a realistic physics-based 3D simulation environment.
arXiv Detail & Related papers (2025-08-06T07:44:38Z) - Teaching Language Models To Gather Information Proactively [53.85419549904644]
Large language models (LLMs) are increasingly expected to function as collaborative partners.<n>In this work, we introduce a new task paradigm: proactive information gathering.<n>We design a scalable framework that generates partially specified, real-world tasks, masking key information.<n>Within this setup, our core innovation is a reinforcement finetuning strategy that rewards questions that elicit genuinely new, implicit user information.
arXiv Detail & Related papers (2025-07-28T23:50:09Z) - Leveraging Knowledge Graphs and LLM Reasoning to Identify Operational Bottlenecks for Warehouse Planning Assistance [1.2749527861829046]
Our framework integrates Knowledge Graphs (KGs) and Large Language Model (LLM)-based agents.<n>It transforms raw DES data into a semantically rich KG, capturing relationships between simulation events and entities.<n>An LLM-based agent uses iterative reasoning, generating interdependent sub-questions. For each sub-question, it creates Cypher queries for KG interaction, extracts information, and self-reflects to correct errors.
arXiv Detail & Related papers (2025-07-23T07:18:55Z) - STRUCTSENSE: A Task-Agnostic Agentic Framework for Structured Information Extraction with Human-In-The-Loop Evaluation and Benchmarking [2.355572228890207]
StructSense is a modular, task-agnostic, open-source framework for structured information extraction built on Large Language Models.<n>It is guided by domain-specific symbolic knowledge enabling it encoded complex domain content effectively.<n>We demonstrate that StructSense can overcome both the limitations of domain sensitivity and the lack of cross-task generalizability.
arXiv Detail & Related papers (2025-07-04T15:51:07Z) - When Models Know More Than They Can Explain: Quantifying Knowledge Transfer in Human-AI Collaboration [79.69935257008467]
We introduce Knowledge Integration and Transfer Evaluation (KITE), a conceptual and experimental framework for Human-AI knowledge transfer capabilities.<n>We conduct the first large-scale human study (N=118) explicitly designed to measure it.<n>In our two-phase setup, humans first ideate with an AI on problem-solving strategies, then independently implement solutions, isolating model explanations' influence on human understanding.
arXiv Detail & Related papers (2025-06-05T20:48:16Z) - Contextual Integrity in LLMs via Reasoning and Reinforcement Learning [41.47162246075031]
We develop a reinforcement learning framework that instills in models the reasoning necessary to achieve contextual integrity.<n>We show that our method substantially reduces inappropriate information disclosure while maintaining task performance.
arXiv Detail & Related papers (2025-05-29T21:26:21Z) - InfoDeepSeek: Benchmarking Agentic Information Seeking for Retrieval-Augmented Generation [63.55258191625131]
InfoDeepSeek is a new benchmark for assessing agentic information seeking in real-world, dynamic web environments.<n>We propose a systematic methodology for constructing challenging queries satisfying the criteria of determinacy, difficulty, and diversity.<n>We develop the first evaluation framework tailored to dynamic agentic information seeking, including fine-grained metrics about the accuracy, utility, and compactness of information seeking outcomes.
arXiv Detail & Related papers (2025-05-21T14:44:40Z) - Data Therapist: Eliciting Domain Knowledge from Subject Matter Experts Using Large Language Models [17.006423792670414]
We present the Data Therapist, a web-based tool that helps domain experts externalize implicit knowledge through a mixed-initiative process.<n>The resulting structured knowledge base can inform both human and automated visualization design.
arXiv Detail & Related papers (2025-05-01T11:10:17Z) - Disentangling Memory and Reasoning Ability in Large Language Models [97.26827060106581]
We propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions.<n>Our experiment results show that this decomposition improves model performance and enhances the interpretability of the inference process.
arXiv Detail & Related papers (2024-11-20T17:55:38Z) - ReST meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent [50.508669199496474]
We develop a ReAct-style LLM agent with the ability to reason and act upon external knowledge.
We refine the agent through a ReST-like method that iteratively trains on previous trajectories.
Starting from a prompted large model and after just two iterations of the algorithm, we can produce a fine-tuned small model.
arXiv Detail & Related papers (2023-12-15T18:20:15Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
Large language models (LLMs) have shown superior performance without task-specific fine-tuning.
Retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering.
Self-Knowledge guided Retrieval augmentation (SKR) is a simple yet effective method which can let LLMs refer to the questions they have previously encountered.
arXiv Detail & Related papers (2023-10-08T04:22:33Z) - Asking Before Acting: Gather Information in Embodied Decision Making with Language Models [20.282749796376063]
We show that Large Language Models (LLMs) encounter challenges in efficiently gathering essential information in unfamiliar environments.
We propose textitAsking Before Acting (ABA), a method that empowers the agent to proactively inquire with external sources for pertinent information using natural language.
We conduct extensive experiments involving a spectrum of environments including text-based household everyday tasks, robot arm manipulation tasks, and real world open domain image based embodied tasks.
arXiv Detail & Related papers (2023-05-25T04:05:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.