Combining Graph Neural Networks and Mixed Integer Linear Programming for Molecular Inference under the Two-Layered Model
- URL: http://arxiv.org/abs/2507.03920v1
- Date: Sat, 05 Jul 2025 06:57:37 GMT
- Title: Combining Graph Neural Networks and Mixed Integer Linear Programming for Molecular Inference under the Two-Layered Model
- Authors: Jianshen Zhu, Naveed Ahmed Azam, Kazuya Haraguchi, Liang Zhao, Tatsuya Akutsu,
- Abstract summary: We develop a molecular inference framework based on mol-infer, namely mol-infer-GNN, that utilizes GNN as the learning method.<n>Our proposed GNN model can obtain satisfying learning performances for some properties despite its simple structure.
- Score: 6.107266553770076
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, a novel two-phase framework named mol-infer for inference of chemical compounds with prescribed abstract structures and desired property values has been proposed. The framework mol-infer is primarily based on using mixed integer linear programming (MILP) to simulate the computational process of machine learning methods and describe the necessary and sufficient conditions to ensure such a chemical graph exists. The existing approaches usually first convert the chemical compounds into handcrafted feature vectors to construct prediction functions, but because of the limit on the kinds of descriptors originated from the need for tractability in the MILP formulation, the learning performances on datasets of some properties are not good enough. A lack of good learning performance can greatly lower the quality of the inferred chemical graphs, and thus improving learning performance is of great importance. On the other hand, graph neural networks (GNN) offer a promising machine learning method to directly utilize the chemical graphs as the input, and many existing GNN-based approaches to the molecular property prediction problem have shown that they can enjoy better learning performances compared to the traditional approaches that are based on feature vectors. In this study, we develop a molecular inference framework based on mol-infer, namely mol-infer-GNN, that utilizes GNN as the learning method while keeping the great flexibility originated from the two-layered model on the abstract structure of the chemical graph to be inferred. We conducted computational experiments on the QM9 dataset to show that our proposed GNN model can obtain satisfying learning performances for some properties despite its simple structure, and can infer small chemical graphs comprising up to 20 non-hydrogen atoms within reasonable computational time.
Related papers
- Investigating Graph Neural Networks and Classical Feature-Extraction Techniques in Activity-Cliff and Molecular Property Prediction [0.6906005491572401]
Molecular featurisation refers to the transformation of molecular data into numerical feature vectors.
Message-passing graph neural networks (GNNs) have emerged as a novel method to learn differentiable features directly from molecular graphs.
arXiv Detail & Related papers (2024-11-20T20:07:48Z) - GraphXForm: Graph transformer for computer-aided molecular design [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds.<n>We evaluate it on various drug design tasks, demonstrating superior objective scores compared to state-of-the-art molecular design approaches.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
We propose a novel paradigm of "pre-train, prompt, fine-tune" for molecular representation learning, named molecule continuous prompt tuning (MolCPT)
MolCPT defines a motif prompting function that uses the pre-trained model to project the standalone input into an expressive prompt.
Experiments on several benchmark datasets show that MolCPT efficiently generalizes pre-trained GNNs for molecular property prediction.
arXiv Detail & Related papers (2022-12-20T19:32:30Z) - Molecular Design Based on Integer Programming and Quadratic Descriptors
in a Two-layered Model [5.845754795753478]
The framework infers a desired chemical graph by solving a mixed integer linear program (MILP)
A set of graph theoretical descriptors in the feature function plays a key role to derive a compact formulation of such an MILP.
The results of our computational experiments suggest that the proposed method can infer a chemical structure with up to 50 non-hydrogen atoms.
arXiv Detail & Related papers (2022-09-13T08:27:25Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
We propose a well-designed hierarchical informative graph neural networks framework (termed HiGNN) for predicting molecular property.
Experiments demonstrate that HiGNN achieves state-of-the-art predictive performance on many challenging drug discovery-associated benchmark datasets.
arXiv Detail & Related papers (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
We present Multi-View Graph Neural Network (MV-GNN), a multi-view message passing architecture.
In MV-GNN, we introduce a shared self-attentive readout component and disagreement loss to stabilize the training process.
We further boost the expressive power of MV-GNN by proposing a cross-dependent message passing scheme.
arXiv Detail & Related papers (2020-05-17T04:46:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.