論文の概要: Benchmarking Stochastic Approximation Algorithms for Fairness-Constrained Training of Deep Neural Networks
- arxiv url: http://arxiv.org/abs/2507.04033v1
- Date: Sat, 05 Jul 2025 13:01:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:34.984296
- Title: Benchmarking Stochastic Approximation Algorithms for Fairness-Constrained Training of Deep Neural Networks
- Title(参考訳): 深部ニューラルネットワークの公平性制約学習のための確率近似アルゴリズムのベンチマーク
- Authors: Andrii Kliachkin, Jana Lepšová, Gilles Bareilles, Jakub Mareček,
- Abstract要約: 制約付きディープニューラルネットワーク(DNN)のトレーニング能力は、現代の機械学習モデルの公正性向上に有効である。
我々は,米国国勢調査(Folktables)上に構築された大規模公正制約付き実世界の学習タスクの挑戦的ベンチマークを提供する。
我々は最近提案された3つの非実装アルゴリズムを実装・比較することで、ベンチマークの使用を実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The ability to train Deep Neural Networks (DNNs) with constraints is instrumental in improving the fairness of modern machine-learning models. Many algorithms have been analysed in recent years, and yet there is no standard, widely accepted method for the constrained training of DNNs. In this paper, we provide a challenging benchmark of real-world large-scale fairness-constrained learning tasks, built on top of the US Census (Folktables). We point out the theoretical challenges of such tasks and review the main approaches in stochastic approximation algorithms. Finally, we demonstrate the use of the benchmark by implementing and comparing three recently proposed, but as-of-yet unimplemented, algorithms both in terms of optimization performance, and fairness improvement. We release the code of the benchmark as a Python package at https://github.com/humancompatible/train.
- Abstract(参考訳): 制約付きディープニューラルネットワーク(DNN)のトレーニング能力は、現代の機械学習モデルの公正性向上に有効である。
近年、多くのアルゴリズムが分析されてきたが、DNNの制約付きトレーニングのための標準的、広く受け入れられている手法は存在しない。
本稿では,米国国勢調査(Folktables)上に構築された実世界の大規模公平性制約型学習タスクの挑戦的ベンチマークを提供する。
このようなタスクの理論的課題を指摘し、確率近似アルゴリズムの主なアプローチを概観する。
最後に,最近提案された3つの非実装アルゴリズムを,最適化性能と公平性向上の両面から実装・比較することで,ベンチマークの利用を実証する。
ベンチマークのコードは、https://github.com/ Human compatible/train.comでPythonパッケージとしてリリースします。
関連論文リスト
- Benchmarking Neural Network Training Algorithms [52.890134877995195]
トレーニングアルゴリズムは、ディープラーニングパイプラインに不可欠な部分です。
コミュニティとして、トレーニングアルゴリズムの改善を確実に特定することはできない。
固定ハードウェア上で実行される複数のワークロードを使用した,新たな,競争力のある,時間と時間のベンチマークを導入する。
論文 参考訳(メタデータ) (2023-06-12T15:21:02Z) - Stochastic Unrolled Federated Learning [85.6993263983062]
本稿では,UnRolled Federated Learning (SURF)を導入する。
提案手法は,この拡張における2つの課題,すなわち,非学習者へのデータセット全体の供給の必要性と,フェデレート学習の分散的性質に対処する。
論文 参考訳(メタデータ) (2023-05-24T17:26:22Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - AskewSGD : An Annealed interval-constrained Optimisation method to train
Quantized Neural Networks [12.229154524476405]
我々は、深層ニューラルネットワーク(DNN)を量子化重みでトレーニングするための新しいアルゴリズム、Annealed Skewed SGD - AskewSGDを開発した。
アクティブなセットと実行可能な方向を持つアルゴリズムとは異なり、AskewSGDは実行可能な全セットの下でのプロジェクションや最適化を避けている。
実験結果から,AskewSGDアルゴリズムは古典的ベンチマークの手法と同等以上の性能を示した。
論文 参考訳(メタデータ) (2022-11-07T18:13:44Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
非パラメトリックストリーミング設定のためのニューラルネットワーク(NN)ベースの能動学習アルゴリズムの理論的および経験的性能を改善する。
本研究では,SOTA(State-of-the-art (State-the-art)) 関連研究で使用されるものよりも,アクティブラーニングに適する人口減少を最小化することにより,2つの後悔の指標を導入する。
論文 参考訳(メタデータ) (2022-10-02T05:03:38Z) - A Continuous Optimisation Benchmark Suite from Neural Network Regression [0.0]
ニューラルネットワークのトレーニングは、近年のディープラーニングの成功で注目を集めている最適化タスクである。
勾配降下変種は、大規模機械学習タスクにおける信頼性の高いパフォーマンスにおいて、最も一般的な選択である。
CORNNは、ニューラルネットワークのトレーニング問題に対して、連続的なブラックボックスアルゴリズムのパフォーマンスをベンチマークするスイートである。
論文 参考訳(メタデータ) (2021-09-12T20:24:11Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
確率的モデリングの最近の進歩は、確率の数値的評価を必要としないシミュレーションに基づく推論アルゴリズムを多数もたらした。
推論タスクと適切なパフォーマンス指標を備えたベンチマークを,アルゴリズムの初期選択とともに提供する。
性能指標の選択は重要であり、最先端のアルゴリズムでさえ改善の余地があり、逐次推定によりサンプリング効率が向上することがわかった。
論文 参考訳(メタデータ) (2021-01-12T18:31:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。