CTR-Guided Generative Query Suggestion in Conversational Search
- URL: http://arxiv.org/abs/2507.04072v1
- Date: Sat, 05 Jul 2025 15:32:41 GMT
- Title: CTR-Guided Generative Query Suggestion in Conversational Search
- Authors: Erxue Min, Hsiu-Yuan Huang, Xihong Yang, Min Yang, Xin Jia, Yunfang Wu, Hengyi Cai, Junfeng Wang, Shuaiqiang Wang, Dawei Yin,
- Abstract summary: GQS is a generative framework that integrates click modeling and preference optimization to enhance real-world user engagement.<n>GQGS consists of three key components: (1) a Multi-Source CTR Modeling module that captures diverse contextual signals to estimate fine-grained click-through rates; (2) a Diversity-Aware Preference Alignment strategy using CTR-weighted Direct Preference Optimization (DPO); and (3) a CTR-Calibrated Iterative Optimization process that jointly refines the CTR and generation models across training rounds.
- Score: 35.654879254147964
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating effective query suggestions in conversational search requires aligning model outputs with user preferences, which is challenging due to sparse and noisy click signals. We propose GQS, a generative framework that integrates click modeling and preference optimization to enhance real-world user engagement. GQS consists of three key components: (1) a Multi-Source CTR Modeling module that captures diverse contextual signals to estimate fine-grained click-through rates; (2) a Diversity-Aware Preference Alignment strategy using CTR-weighted Direct Preference Optimization (DPO), which balances relevance and semantic diversity; and (3) a CTR-Calibrated Iterative Optimization process that jointly refines the CTR and generation models across training rounds. Experiments on two real-world tasks demonstrate that GQS outperforms strong baselines in CTR, relevance, and diversity.
Related papers
- SCoRE: Streamlined Corpus-based Relation Extraction using Multi-Label Contrastive Learning and Bayesian kNN [0.2812395851874055]
We introduce SCoRE, a modular and cost-effective sentence-level relation extraction system.<n>SCoRE enables easy PLM switching, requires no finetuning, and adapts smoothly to diverse corpora and KGs.<n>We show that SCoRE matches or surpasses state-of-the-art methods while significantly reducing energy consumption.
arXiv Detail & Related papers (2025-07-09T14:33:07Z) - PRECTR: A Synergistic Framework for Integrating Personalized Search Relevance Matching and CTR Prediction [3.753643743882433]
Two primary tasks in the search recommendation system are search relevance matching and click-through rate (CTR) prediction.<n>We propose a unified Personalized Search RElevance Matching and CTR Prediction Fusion Model(PRECTR)<n>Specifically, PRECTR integrates the CTR prediction and search relevance matching into one framework to enhance the interaction and consistency of the two modules.
arXiv Detail & Related papers (2025-03-24T07:07:04Z) - C-3PO: Compact Plug-and-Play Proxy Optimization to Achieve Human-like Retrieval-Augmented Generation [13.120930059424975]
C-3PO is a proxy-centric framework that facilitates communication between retrievers and large language models.<n>Our framework implements three specialized agents that collaboratively optimize the entire RAG pipeline.
arXiv Detail & Related papers (2025-02-10T07:04:32Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - LLM4Rerank: LLM-based Auto-Reranking Framework for Recommendations [51.76373105981212]
Reranking is a critical component in recommender systems, playing an essential role in refining the output of recommendation algorithms.<n>We introduce a comprehensive reranking framework, designed to seamlessly integrate various reranking criteria.<n>A customizable input mechanism is also integrated, enabling the tuning of the language model's focus to meet specific reranking needs.
arXiv Detail & Related papers (2024-06-18T09:29:18Z) - FLIP: Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction [49.510163437116645]
Click-through rate (CTR) prediction plays as a core function module in personalized online services.
Traditional ID-based models for CTR prediction take as inputs the one-hot encoded ID features of tabular modality.
Pretrained Language Models(PLMs) has given rise to another paradigm, which takes as inputs the sentences of textual modality.
We propose to conduct Fine-grained feature-level ALignment between ID-based Models and Pretrained Language Models(FLIP) for CTR prediction.
arXiv Detail & Related papers (2023-10-30T11:25:03Z) - ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction [45.15127775876369]
Click-through rate (CTR) prediction has become increasingly indispensable for various Internet applications.
Traditional CTR models convert the multi-field categorical data into ID features via one-hot encoding, and extract the collaborative signals among features.
We propose a novel model-agnostic framework (i.e., ClickPrompt) where we incorporate CTR models to generate interaction-aware soft prompts.
arXiv Detail & Related papers (2023-10-13T16:37:53Z) - Choosing the Best of Both Worlds: Diverse and Novel Recommendations
through Multi-Objective Reinforcement Learning [68.45370492516531]
We introduce Scalarized Multi-Objective Reinforcement Learning (SMORL) for the Recommender Systems (RS) setting.
SMORL agent augments standard recommendation models with additional RL layers that enforce it to simultaneously satisfy three principal objectives: accuracy, diversity, and novelty of recommendations.
Our experimental results on two real-world datasets reveal a substantial increase in aggregate diversity, a moderate increase in accuracy, reduced repetitiveness of recommendations, and demonstrate the importance of reinforcing diversity and novelty as complementary objectives.
arXiv Detail & Related papers (2021-10-28T13:22:45Z) - Dual Attentive Sequential Learning for Cross-Domain Click-Through Rate
Prediction [76.98616102965023]
Cross domain recommender system constitutes a powerful method to tackle the cold-start and sparsity problem.
We propose a novel approach to cross-domain sequential recommendations based on the dual learning mechanism.
arXiv Detail & Related papers (2021-06-05T01:21:21Z) - AutoDis: Automatic Discretization for Embedding Numerical Features in
CTR Prediction [45.69943728028556]
Learning sophisticated feature interactions is crucial for Click-Through Rate (CTR) prediction in recommender systems.
Various deep CTR models follow an Embedding & Feature Interaction paradigm.
We propose AutoDis, a framework that discretizes features in numerical fields automatically and is optimized with CTR models in an end-to-end manner.
arXiv Detail & Related papers (2020-12-16T14:31:31Z) - CRACT: Cascaded Regression-Align-Classification for Robust Visual
Tracking [97.84109669027225]
We introduce an improved proposal refinement module, Cascaded Regression-Align- Classification (CRAC)
CRAC yields new state-of-the-art performances on many benchmarks.
In experiments on seven benchmarks including OTB-2015, UAV123, NfS, VOT-2018, TrackingNet, GOT-10k and LaSOT, our CRACT exhibits very promising results in comparison with state-of-the-art competitors.
arXiv Detail & Related papers (2020-11-25T02:18:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.