Efficient Detection of Intermittent Job Failures Using Few-Shot Learning
- URL: http://arxiv.org/abs/2507.04173v2
- Date: Tue, 08 Jul 2025 02:06:50 GMT
- Title: Efficient Detection of Intermittent Job Failures Using Few-Shot Learning
- Authors: Henri Aïdasso, Francis Bordeleau, Ali Tizghadam,
- Abstract summary: We introduce a novel approach to intermittent job failure detection using few-shot learning.<n>Our approach achieves 70-88% F1-score with only 12 shots in all projects, outperforming the state-of-the-art (SOTA) approach.
- Score: 2.8402080392117757
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: One of the main challenges developers face in the use of continuous integration (CI) and deployment pipelines is the occurrence of intermittent job failures, which result from unexpected non-deterministic issues (e.g., flaky tests or infrastructure problems) rather than regular code-related errors such as bugs. Prior studies developed machine learning (ML) models trained on large datasets of job logs to classify job failures as either intermittent or regular. As an alternative to costly manual labeling of large datasets, the state-of-the-art (SOTA) approach leveraged a heuristic based on non-deterministic job reruns. However, this method mislabels intermittent job failures as regular in contexts where rerunning suspicious job failures is not an explicit policy, and therefore limits the SOTA's performance in practice. In fact, our manual analysis of 2,125 job failures from 5 industrial and 1 open-source projects reveals that, on average, 32% of intermittent job failures are mislabeled as regular. To address these limitations, this paper introduces a novel approach to intermittent job failure detection using few-shot learning (FSL). Specifically, we fine-tune a small language model using a few number of manually labeled log examples to generate rich embeddings, which are then used to train an ML classifier. Our FSL-based approach achieves 70-88% F1-score with only 12 shots in all projects, outperforming the SOTA, which proved ineffective (34-52% F1-score) in 4 projects. Overall, this study underlines the importance of data quality over quantity and provides a more efficient and practical framework for the detection of intermittent job failures in organizations.
Related papers
- Which Agent Causes Task Failures and When? On Automated Failure Attribution of LLM Multi-Agent Systems [50.29939179830491]
Failure attribution in LLM multi-agent systems remains underexplored and labor-intensive.<n>We develop and evaluate three automated failure attribution methods, summarizing their corresponding pros and cons.<n>The best method achieves 53.5% accuracy in identifying failure-responsible agents but only 14.2% in pinpointing failure steps.
arXiv Detail & Related papers (2025-04-30T23:09:44Z) - On the Diagnosis of Flaky Job Failures: Understanding and Prioritizing Failure Categories [2.8402080392117757]
flaky job failures are one of the main issues hindering Continuous Deployment (CD)<n>This study examines 4,511 flaky job failures at TELUS to identify the different categories of flaky failures that we prioritize based on Recency, Frequency, and Monetary (RFM) measures.
arXiv Detail & Related papers (2025-01-09T05:15:55Z) - One-step Noisy Label Mitigation [86.57572253460125]
Mitigating the detrimental effects of noisy labels on the training process has become increasingly critical.
We propose One-step Anti-Noise (OSA), a model-agnostic noisy label mitigation paradigm.
We empirically demonstrate the superiority of OSA, highlighting its enhanced training robustness, improved task transferability, ease of deployment, and reduced computational costs.
arXiv Detail & Related papers (2024-10-02T18:42:56Z) - Large Language Models for Anomaly Detection in Computational Workflows: from Supervised Fine-Tuning to In-Context Learning [9.601067780210006]
This paper leverages large language models (LLMs) for workflow anomaly detection by exploiting their ability to learn complex data patterns.
Two approaches are investigated: 1) supervised fine-tuning (SFT), where pre-trained LLMs are fine-tuned on labeled data for sentence classification to identify anomalies, and 2) in-context learning (ICL) where prompts containing task descriptions and examples guide LLMs in few-shot anomaly detection without fine-tuning.
arXiv Detail & Related papers (2024-07-24T16:33:04Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - Label-Efficient Interactive Time-Series Anomaly Detection [17.799924009674694]
We propose a Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) system.
To achieve this goal, the system integrates weak supervision and active learning collaboratively.
We conduct experiments on three time-series anomaly detection datasets, demonstrating that the proposed system is superior to existing solutions.
arXiv Detail & Related papers (2022-12-30T10:16:15Z) - Contrastive Error Attribution for Finetuned Language Models [35.80256755393739]
noisy and misannotated data is a core cause of hallucinations and unfaithful outputs in Natural Language Generation (NLG) tasks.
We introduce a framework to identify and remove low-quality training instances that lead to undesirable outputs.
We show that existing approaches for error tracing, such as gradient-based influence measures, do not perform reliably for detecting faithfulness errors.
arXiv Detail & Related papers (2022-12-21T02:28:07Z) - LogLAB: Attention-Based Labeling of Log Data Anomalies via Weak
Supervision [63.08516384181491]
We present LogLAB, a novel modeling approach for automated labeling of log messages without requiring manual work by experts.
Our method relies on estimated failure time windows provided by monitoring systems to produce precise labeled datasets in retrospect.
Our evaluation shows that LogLAB consistently outperforms nine benchmark approaches across three different datasets and maintains an F1-score of more than 0.98 even at large failure time windows.
arXiv Detail & Related papers (2021-11-02T15:16:08Z) - Tracking the risk of a deployed model and detecting harmful distribution
shifts [105.27463615756733]
In practice, it may make sense to ignore benign shifts, under which the performance of a deployed model does not degrade substantially.
We argue that a sensible method for firing off a warning has to both (a) detect harmful shifts while ignoring benign ones, and (b) allow continuous monitoring of model performance without increasing the false alarm rate.
arXiv Detail & Related papers (2021-10-12T17:21:41Z) - Meta-Generating Deep Attentive Metric for Few-shot Classification [53.07108067253006]
We present a novel deep metric meta-generation method to generate a specific metric for a new few-shot learning task.
In this study, we structure the metric using a three-layer deep attentive network that is flexible enough to produce a discriminative metric for each task.
We gain surprisingly obvious performance improvement over state-of-the-art competitors, especially in the challenging cases.
arXiv Detail & Related papers (2020-12-03T02:07:43Z) - Automatic Feasibility Study via Data Quality Analysis for ML: A
Case-Study on Label Noise [21.491392581672198]
We present Snoopy, with the goal of supporting data scientists and machine learning engineers performing a systematic and theoretically founded feasibility study.
We approach this problem by estimating the irreducible error of the underlying task, also known as the Bayes error rate (BER)
We demonstrate in end-to-end experiments how users are able to save substantial labeling time and monetary efforts.
arXiv Detail & Related papers (2020-10-16T14:21:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.