Where to Intervene: Action Selection in Deep Reinforcement Learning
- URL: http://arxiv.org/abs/2507.04187v1
- Date: Sat, 05 Jul 2025 23:40:55 GMT
- Title: Where to Intervene: Action Selection in Deep Reinforcement Learning
- Authors: Wenbo Zhang, Hengrui Cai,
- Abstract summary: We propose a general data-driven action selection approach with model-free and computationally friendly properties.<n>Our method not only selects minimal sufficient actions but also controls the false discovery rate via knockoff sampling.
- Score: 5.470195794278266
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep reinforcement learning (RL) has gained widespread adoption in recent years but faces significant challenges, particularly in unknown and complex environments. Among these, high-dimensional action selection stands out as a critical problem. Existing works often require a sophisticated prior design to eliminate redundancy in the action space, relying heavily on domain expert experience or involving high computational complexity, which limits their generalizability across different RL tasks. In this paper, we address these challenges by proposing a general data-driven action selection approach with model-free and computationally friendly properties. Our method not only selects minimal sufficient actions but also controls the false discovery rate via knockoff sampling. More importantly, we seamlessly integrate the action selection into deep RL methods during online training. Empirical experiments validate the established theoretical guarantees, demonstrating that our method surpasses various alternative techniques in terms of both performance in variable selection and overall achieved rewards.
Related papers
- MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization [91.80034860399677]
Reinforcement learning algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards.<n>We introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration.<n>We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits.
arXiv Detail & Related papers (2024-12-16T18:59:53Z) - Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
This paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through transfer and inverse reinforcement learning (T-IRL)
Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies.
Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
arXiv Detail & Related papers (2024-11-15T15:18:57Z) - Diversified Batch Selection for Training Acceleration [68.67164304377732]
A prevalent research line, known as online batch selection, explores selecting informative subsets during the training process.
vanilla reference-model-free methods involve independently scoring and selecting data in a sample-wise manner.
We propose Diversified Batch Selection (DivBS), which is reference-model-free and can efficiently select diverse and representative samples.
arXiv Detail & Related papers (2024-06-07T12:12:20Z) - Combinatorial Optimization with Policy Adaptation using Latent Space Search [44.12073954093942]
We present a novel approach for designing performant algorithms to solve complex, typically NP-hard, problems.
We show that our search strategy outperforms state-of-the-art approaches on 11 standard benchmarking tasks.
arXiv Detail & Related papers (2023-11-13T12:24:54Z) - Stepsize Learning for Policy Gradient Methods in Contextual Markov
Decision Processes [35.889129338603446]
Policy-based algorithms are among the most widely adopted techniques in model-free RL.
They tend to struggle when asked to accomplish a series of heterogeneous tasks.
We introduce a new formulation, known as meta-MDP, that can be used to solve any hyper parameter selection problem in RL.
arXiv Detail & Related papers (2023-06-13T12:58:12Z) - Reinforcement Learning from Diverse Human Preferences [68.4294547285359]
This paper develops a method for crowd-sourcing preference labels and learning from diverse human preferences.
The proposed method is tested on a variety of tasks in DMcontrol and Meta-world.
It has shown consistent and significant improvements over existing preference-based RL algorithms when learning from diverse feedback.
arXiv Detail & Related papers (2023-01-27T15:18:54Z) - A Transferable and Automatic Tuning of Deep Reinforcement Learning for
Cost Effective Phishing Detection [21.481974148873807]
Many challenging real-world problems require the deployment of ensembles multiple complementary learning models.
Deep Reinforcement Learning (DRL) offers a cost-effective alternative, where detectors are dynamically chosen based on the output of their predecessors.
arXiv Detail & Related papers (2022-09-19T14:09:07Z) - Dynamics Generalization via Information Bottleneck in Deep Reinforcement
Learning [90.93035276307239]
We propose an information theoretic regularization objective and an annealing-based optimization method to achieve better generalization ability in RL agents.
We demonstrate the extreme generalization benefits of our approach in different domains ranging from maze navigation to robotic tasks.
This work provides a principled way to improve generalization in RL by gradually removing information that is redundant for task-solving.
arXiv Detail & Related papers (2020-08-03T02:24:20Z) - Soft Hindsight Experience Replay [77.99182201815763]
Soft Hindsight Experience Replay (SHER) is a novel approach based on HER and Maximum Entropy Reinforcement Learning (MERL)
We evaluate SHER on Open AI Robotic manipulation tasks with sparse rewards.
arXiv Detail & Related papers (2020-02-06T03:57:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.