Domain Generalizable Portrait Style Transfer
- URL: http://arxiv.org/abs/2507.04243v2
- Date: Tue, 08 Jul 2025 02:18:16 GMT
- Title: Domain Generalizable Portrait Style Transfer
- Authors: Xinbo Wang, Wenju Xu, Qing Zhang, Wei-Shi Zheng,
- Abstract summary: We propose to establish dense semantic correspondence between the given input and reference portraits.<n>We obtain a warped reference semantically aligned with the input.<n>A style adapter is also designed to provide style guidance from the warped reference.
- Score: 37.85739992959271
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a portrait style transfer method that generalizes well to various different domains while enabling high-quality semantic-aligned stylization on regions including hair, eyes, eyelashes, skins, lips, and background. To this end, we propose to establish dense semantic correspondence between the given input and reference portraits based on a pre-trained model and a semantic adapter, with which we obtain a warped reference semantically aligned with the input. To ensure effective yet controllable style transfer, we devise an AdaIN-Wavelet transform to balance content preservation and stylization by blending low-frequency information of the warped reference with high-frequency information of the input in the latent space. A style adapter is also designed to provide style guidance from the warped reference. With the stylized latent from AdaIN-Wavelet transform, we employ a dual-conditional diffusion model that integrates a ControlNet recording high-frequency information and the style guidance to generate the final result. Extensive experiments demonstrate the superiority of our method. Our code and trained model are available at https://github.com/wangxb29/DGPST.
Related papers
- Balanced Image Stylization with Style Matching Score [36.542802101359705]
Style Matching Score (SMS) is a novel optimization method for image stylization with diffusion models.<n>SMS balances style alignment and content preservation, outperforming state-of-the-art approaches.
arXiv Detail & Related papers (2025-03-10T17:58:02Z) - Z-STAR+: A Zero-shot Style Transfer Method via Adjusting Style Distribution [24.88532732093652]
Style transfer presents a significant challenge, primarily centered on identifying an appropriate style representation.<n>In contrast to existing approaches, we have discovered that latent features in vanilla diffusion models inherently contain natural style and content distributions.<n>Our method adopts dual denoising paths to represent content and style references in latent space, subsequently guiding the content image denoising process with style latent codes.
arXiv Detail & Related papers (2024-11-28T15:56:17Z) - ArtWeaver: Advanced Dynamic Style Integration via Diffusion Model [73.95608242322949]
Stylized Text-to-Image Generation (STIG) aims to generate images from text prompts and style reference images.
We present ArtWeaver, a novel framework that leverages pretrained Stable Diffusion to address challenges such as misinterpreted styles and inconsistent semantics.
arXiv Detail & Related papers (2024-05-24T07:19:40Z) - ParaGuide: Guided Diffusion Paraphrasers for Plug-and-Play Textual Style
Transfer [57.6482608202409]
Textual style transfer is the task of transforming stylistic properties of text while preserving meaning.
We introduce a novel diffusion-based framework for general-purpose style transfer that can be flexibly adapted to arbitrary target styles.
We validate the method on the Enron Email Corpus, with both human and automatic evaluations, and find that it outperforms strong baselines on formality, sentiment, and even authorship style transfer.
arXiv Detail & Related papers (2023-08-29T17:36:02Z) - A Unified Arbitrary Style Transfer Framework via Adaptive Contrastive
Learning [84.8813842101747]
Unified Contrastive Arbitrary Style Transfer (UCAST) is a novel style representation learning and transfer framework.
We present an adaptive contrastive learning scheme for style transfer by introducing an input-dependent temperature.
Our framework consists of three key components, i.e., a parallel contrastive learning scheme for style representation and style transfer, a domain enhancement module for effective learning of style distribution, and a generative network for style transfer.
arXiv Detail & Related papers (2023-03-09T04:35:00Z) - DiffStyler: Controllable Dual Diffusion for Text-Driven Image
Stylization [66.42741426640633]
DiffStyler is a dual diffusion processing architecture to control the balance between the content and style of diffused results.
We propose a content image-based learnable noise on which the reverse denoising process is based, enabling the stylization results to better preserve the structure information of the content image.
arXiv Detail & Related papers (2022-11-19T12:30:44Z) - Learning Graph Neural Networks for Image Style Transfer [131.73237185888215]
State-of-the-art parametric and non-parametric style transfer approaches are prone to either distorted local style patterns due to global statistics alignment, or unpleasing artifacts resulting from patch mismatching.
In this paper, we study a novel semi-parametric neural style transfer framework that alleviates the deficiency of both parametric and non-parametric stylization.
arXiv Detail & Related papers (2022-07-24T07:41:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.