論文の概要: Improving Action Smoothness for a Cascaded Online Learning Flight Control System
- arxiv url: http://arxiv.org/abs/2507.04346v1
- Date: Sun, 06 Jul 2025 11:19:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.13132
- Title: Improving Action Smoothness for a Cascaded Online Learning Flight Control System
- Title(参考訳): オンライン学習飛行制御システムにおける動作平滑性の改善
- Authors: Yifei Li, Erik-jan van Kampen,
- Abstract要約: 制御動作の振幅と周波数を減少させるために,オンライン時空間滑らか化手法と低域通過フィルタを導入する。
シミュレーションの結果,2つの手法による改善が示された。
- 参考スコア(独自算出の注目度): 7.871518182413388
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper aims to improve the action smoothness of a cascaded online learning flight control system. Although the cascaded structure is widely used in flight control design, its stability can be compromised by oscillatory control actions, which poses challenges for practical engineering applications. To address this issue, we introduce an online temporal smoothness technique and a low-pass filter to reduce the amplitude and frequency of the control actions. Fast Fourier Transform (FFT) is used to analyze policy performance in the frequency domain. Simulation results demonstrate the improvements achieved by the two proposed techniques.
- Abstract(参考訳): 本稿では,オンライン学習飛行制御システムの動作平滑性向上を目的とした。
カスケード構造は飛行制御設計で広く用いられているが、その安定性は振動制御によって損なわれ、実用的な工学的応用に挑戦する。
この問題に対処するために、制御動作の振幅と周波数を減少させるために、オンライン時空間滑らか化手法とローパスフィルタを導入する。
Fast Fourier Transform (FFT) は周波数領域のポリシー性能を解析するために用いられる。
シミュレーションの結果,2つの手法による改善が示された。
関連論文リスト
- Attention on flow control: transformer-based reinforcement learning for lift regulation in highly disturbed flows [0.0]
本研究では, ピッチ制御によるガスト列の空力昇降制御を効果的に行うための変圧器を用いた強化学習フレームワークを提案する。
学習戦略は,ガッツ数の増加に伴って性能ギャップが拡大し,最高の比例制御よりも優れることを示す。
論文 参考訳(メタデータ) (2025-06-11T20:14:28Z) - Growing Q-Networks: Solving Continuous Control Tasks with Adaptive Control Resolution [51.83951489847344]
ロボット工学の応用において、スムーズな制御信号はシステム摩耗とエネルギー効率を減らすために一般的に好まれる。
本研究では,離散的な動作空間を粗い状態から細かい制御分解能まで拡大することにより,この性能ギャップを埋めることを目的とする。
我々の研究は、値分解とアダプティブ・コントロール・リゾリューションが組み合わさることで、単純な批判のみのアルゴリズムが得られ、連続制御タスクにおいて驚くほど高い性能が得られることを示唆している。
論文 参考訳(メタデータ) (2024-04-05T17:58:37Z) - Tuning Legged Locomotion Controllers via Safe Bayesian Optimization [47.87675010450171]
本稿では,ロボットハードウェアプラットフォームにおけるモデルベースコントローラの展開を効率化するための,データ駆動型戦略を提案する。
モデルフリーな安全な学習アルゴリズムを用いて制御ゲインのチューニングを自動化し、制御定式化で使用される単純化されたモデルと実システムとのミスマッチに対処する。
論文 参考訳(メタデータ) (2023-06-12T13:10:14Z) - Improving the Performance of Robust Control through Event-Triggered
Learning [74.57758188038375]
LQR問題における不確実性に直面していつ学習するかを決定するイベントトリガー学習アルゴリズムを提案する。
本研究では,ロバストな制御器ベースライン上での性能向上を数値例で示す。
論文 参考訳(メタデータ) (2022-07-28T17:36:37Z) - Learning Variable Impedance Control for Aerial Sliding on Uneven
Heterogeneous Surfaces by Proprioceptive and Tactile Sensing [42.27572349747162]
本研究では,空中すべり作業に対する学習に基づく適応制御手法を提案する。
提案するコントローラ構造は,データ駆動制御とモデルベース制御を組み合わせたものである。
美術品間相互作用制御手法の微調整状態と比較して,追従誤差の低減と外乱拒否の改善を実現した。
論文 参考訳(メタデータ) (2022-06-28T16:28:59Z) - Neural-Fly Enables Rapid Learning for Agile Flight in Strong Winds [96.74836678572582]
本稿では,ディープラーニングを通じて事前学習した表現を組み込むことで,オンラインでの迅速な適応を可能にする学習ベースのアプローチを提案する。
Neural-Flyは、最先端の非線形かつ適応的なコントローラよりもかなり少ないトラッキングエラーで正確な飛行制御を実現する。
論文 参考訳(メタデータ) (2022-05-13T21:55:28Z) - Self-optimizing adaptive optics control with Reinforcement Learning for
high-contrast imaging [0.0]
本稿では,モデルレス強化学習を用いて,閉ループ予測制御のためのリカレントニューラルネットワークコントローラを最適化する方法について述べる。
シミュレーションでは,我々のアルゴリズムが高次変形可能なミラーの制御にも適用可能であることを示す。
論文 参考訳(メタデータ) (2021-08-24T10:02:55Z) - Meta-Learning-Based Robust Adaptive Flight Control Under Uncertain Wind
Conditions [13.00214468719929]
リアルタイムモデル学習は、さまざまな風条件で飛行するドローンなどの複雑なダイナミクスシステムにとって困難です。
本稿では,ディープニューラルネットワークからの出力を基本関数の集合として扱うオンライン複合適応手法を提案する。
我々は,風条件の異なる空洞でドローンを飛ばし,挑戦的な軌道を飛行させることにより,我々のアプローチを検証する。
論文 参考訳(メタデータ) (2021-03-02T18:43:59Z) - Regularizing Action Policies for Smooth Control with Reinforcement
Learning [47.312768123967025]
Conditioning for Action Policy Smoothness(CAPS)は、アクションポリシーの効果的な直感的な正規化である。
capsは、ニューラルネットワークコントローラの学習状態-動作マッピングの滑らかさを一貫して改善する。
実システムでテストしたところ、クアドロタードローンのコントローラーの滑らかさが改善され、消費電力は80%近く削減された。
論文 参考訳(メタデータ) (2020-12-11T21:35:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。