Reconstructing Biological Pathways by Applying Selective Incremental Learning to (Very) Small Language Models
- URL: http://arxiv.org/abs/2507.04432v1
- Date: Sun, 06 Jul 2025 15:35:45 GMT
- Title: Reconstructing Biological Pathways by Applying Selective Incremental Learning to (Very) Small Language Models
- Authors: Pranta Saha, Joyce Reimer, Brook Byrns, Connor Burbridge, Neeraj Dhar, Jeffrey Chen, Steven Rayan, Gordon Broderick,
- Abstract summary: General purpose large language AI models (LLM) show a tendency to deliver creative answers, often called "hallucinations"<n>We propose that the design and use of much smaller, domain and even task-specific LM may be a more rational and appropriate use of this technology in biomedical research.
- Score: 0.3613661942047476
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of generative artificial intelligence (AI) models is becoming ubiquitous in many fields. Though progress continues to be made, general purpose large language AI models (LLM) show a tendency to deliver creative answers, often called "hallucinations", which have slowed their application in the medical and biomedical fields where accuracy is paramount. We propose that the design and use of much smaller, domain and even task-specific LM may be a more rational and appropriate use of this technology in biomedical research. In this work we apply a very small LM by today's standards to the specialized task of predicting regulatory interactions between molecular components to fill gaps in our current understanding of intracellular pathways. Toward this we attempt to correctly posit known pathway-informed interactions recovered from manually curated pathway databases by selecting and using only the most informative examples as part of an active learning scheme. With this example we show that a small (~110 million parameters) LM based on a Bidirectional Encoder Representations from Transformers (BERT) architecture can propose molecular interactions relevant to tuberculosis persistence and transmission with over 80% accuracy using less than 25% of the ~520 regulatory relationships in question. Using information entropy as a metric for the iterative selection of new tuning examples, we also find that increased accuracy is driven by favoring the use of the incorrectly assigned statements with the highest certainty (lowest entropy). In contrast, the concurrent use of correct but least certain examples contributed little and may have even been detrimental to the learning rate.
Related papers
- AutoElicit: Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
We introduce AutoElicit to extract knowledge from large language models and construct priors for predictive models.<n>We show these priors are informative and can be refined using natural language.<n>We find that AutoElicit yields priors that can substantially reduce error over uninformative priors, using fewer labels, and consistently outperform in-context learning.
arXiv Detail & Related papers (2024-11-26T10:13:39Z) - CAF-YOLO: A Robust Framework for Multi-Scale Lesion Detection in Biomedical Imagery [0.0682074616451595]
CAF-YOLO is a nimble yet robust method for medical object detection that leverages the strengths of convolutional neural networks (CNNs) and transformers.
ACFM module enhances the modeling of both global and local features, enabling the capture of long-term feature dependencies.
MSNN improves multi-scale information aggregation by extracting features across diverse scales.
arXiv Detail & Related papers (2024-08-04T01:44:44Z) - How Important is Domain Specificity in Language Models and Instruction
Finetuning for Biomedical Relation Extraction? [1.7555695340815782]
General-domain models typically outperformed biomedical-domain models.
biomedical instruction finetuning improved performance to a similar degree as general instruction finetuning.
Our findings suggest it may be more fruitful to focus research effort on larger-scale biomedical instruction finetuning of general LMs.
arXiv Detail & Related papers (2024-02-21T01:57:58Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - Symbiotic Message Passing Model for Transfer Learning between
Anti-Fungal and Anti-Bacterial Domains [0.0]
We develop a novel method, named Symbiotic Message Passing Neural Network (SMPNN), for merging graph-neural-network models from different domains.
We demonstrate the advantage of our approach by predicting anti-fungal activity from anti-bacterial activity.
arXiv Detail & Related papers (2023-04-14T09:21:36Z) - An Adaptive Contrastive Learning Model for Spike Sorting [12.043679000694258]
In neuroscience research, it is important to separate out the activity of individual neurons.
With the development of large-scale silicon technology, artificially interpreting and labeling spikes is becoming increasingly impractical.
We propose a novel modeling framework that learns representations from spikes through contrastive learning.
arXiv Detail & Related papers (2022-05-24T09:18:46Z) - Scientific Language Models for Biomedical Knowledge Base Completion: An
Empirical Study [62.376800537374024]
We study scientific LMs for KG completion, exploring whether we can tap into their latent knowledge to enhance biomedical link prediction.
We integrate the LM-based models with KG embedding models, using a router method that learns to assign each input example to either type of model and provides a substantial boost in performance.
arXiv Detail & Related papers (2021-06-17T17:55:33Z) - Boosting Low-Resource Biomedical QA via Entity-Aware Masking Strategies [25.990479833023166]
Biomedical question-answering (QA) has gained increased attention for its capability to provide users with high-quality information from a vast scientific literature.
We propose a simple yet unexplored approach, which we call biomedical entity-aware masking (BEM)
We encourage masked language models to learn entity-centric knowledge based on the pivotal entities characterizing the domain at hand, and employ those entities to drive the LM fine-tuning. Experimental results show performance on par with state-of-the-art models on several biomedical QA datasets.
arXiv Detail & Related papers (2021-02-16T18:51:13Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge
Graph Summarization [64.56399911605286]
We propose SumGNN: knowledge summarization graph neural network, which is enabled by a subgraph extraction module.
SumGNN outperforms the best baseline by up to 5.54%, and the performance gain is particularly significant in low data relation types.
arXiv Detail & Related papers (2020-10-04T00:14:57Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
We train >35,000 neural network models, sweeping over common featurization techniques.
We found the RNA-seq to be highly redundant and informative even with subsets larger than 128 features.
arXiv Detail & Related papers (2020-04-30T20:42:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.