BiVM: Accurate Binarized Neural Network for Efficient Video Matting
- URL: http://arxiv.org/abs/2507.04456v1
- Date: Sun, 06 Jul 2025 16:32:37 GMT
- Title: BiVM: Accurate Binarized Neural Network for Efficient Video Matting
- Authors: Haotong Qin, Xianglong Liu, Xudong Ma, Lei Ke, Yulun Zhang, Jie Luo, Michele Magno,
- Abstract summary: Deep neural networks for real-time video matting suffer significant computational limitations on edge devices.<n>We present BiVM, an accurate and resource-efficient Binarized neural network for Video Matting.<n>BiVM surpasses alternative binarized video matting networks, including state-of-the-art (SOTA) binarization methods, by a substantial margin.
- Score: 56.000594826508504
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks for real-time video matting suffer significant computational limitations on edge devices, hindering their adoption in widespread applications such as online conferences and short-form video production. Binarization emerges as one of the most common compression approaches with compact 1-bit parameters and efficient bitwise operations. However, accuracy and efficiency limitations exist in the binarized video matting network due to its degenerated encoder and redundant decoder. Following a theoretical analysis based on the information bottleneck principle, the limitations are mainly caused by the degradation of prediction-relevant information in the intermediate features and the redundant computation in prediction-irrelevant areas. We present BiVM, an accurate and resource-efficient Binarized neural network for Video Matting. First, we present a series of binarized computation structures with elastic shortcuts and evolvable topologies, enabling the constructed encoder backbone to extract high-quality representation from input videos for accurate prediction. Second, we sparse the intermediate feature of the binarized decoder by masking homogeneous parts, allowing the decoder to focus on representation with diverse details while alleviating the computation burden for efficient inference. Furthermore, we construct a localized binarization-aware mimicking framework with the information-guided strategy, prompting matting-related representation in full-precision counterparts to be accurately and fully utilized. Comprehensive experiments show that the proposed BiVM surpasses alternative binarized video matting networks, including state-of-the-art (SOTA) binarization methods, by a substantial margin. Moreover, our BiVM achieves significant savings of 14.3x and 21.6x in computation and storage costs, respectively. We also evaluate BiVM on ARM CPU hardware.
Related papers
- BiDense: Binarization for Dense Prediction [62.70804353158387]
BiDense is a generalized binary neural network (BNN) designed for efficient and accurate dense prediction tasks.
BiDense incorporates two key techniques: the Distribution-adaptive Binarizer (DAB) and the Channel-adaptive Full-precision Bypass (CFB)
arXiv Detail & Related papers (2024-11-15T16:46:04Z) - SparseTem: Boosting the Efficiency of CNN-Based Video Encoders by Exploiting Temporal Continuity [15.872209884833977]
We propose a memory-efficient scheduling method to eliminate memory overhead and an online adjustment mechanism to minimize accuracy degradation.
SparseTem achieves speedup of 1.79x for EfficientDet and 4.72x for CRNN, with minimal accuracy drop and no additional memory overhead.
arXiv Detail & Related papers (2024-10-28T07:13:25Z) - PLUM: Improving Inference Efficiency By Leveraging Repetition-Sparsity Trade-Off [2.326200609038491]
Quantization and sparsity are key techniques that translate to repetition and sparsity within tensors at the hardware-software interface.<n>This paper introduces the concept of repetition-sparsity trade-off that helps explain computational efficiency during inference.<n>We propose PLUM, a unified co-design framework that integrates inference systems and quantization to leverage the repetition-sparsity trade-off.
arXiv Detail & Related papers (2023-12-04T02:33:53Z) - BiBench: Benchmarking and Analyzing Network Binarization [72.59760752906757]
Network binarization emerges as one of the most promising compression approaches offering extraordinary computation and memory savings.
Common challenges of binarization, such as accuracy degradation and efficiency limitation, suggest that its attributes are not fully understood.
We present BiBench, a rigorously designed benchmark with in-depth analysis for network binarization.
arXiv Detail & Related papers (2023-01-26T17:17:16Z) - BiFSMNv2: Pushing Binary Neural Networks for Keyword Spotting to
Real-Network Performance [54.214426436283134]
Deep neural networks, such as the Deep-FSMN, have been widely studied for keyword spotting (KWS) applications.
We present a strong yet efficient binary neural network for KWS, namely BiFSMNv2, pushing it to the real-network accuracy performance.
We highlight that benefiting from the compact architecture and optimized hardware kernel, BiFSMNv2 can achieve an impressive 25.1x speedup and 20.2x storage-saving on edge hardware.
arXiv Detail & Related papers (2022-11-13T18:31:45Z) - BiFSMN: Binary Neural Network for Keyword Spotting [47.46397208920726]
BiFSMN is an accurate and extreme-efficient binary neural network for KWS.
We show that BiFSMN can achieve an impressive 22.3x speedup and 15.5x storage-saving on real-world edge hardware.
arXiv Detail & Related papers (2022-02-14T05:16:53Z) - A Coding Framework and Benchmark towards Low-Bitrate Video Understanding [63.05385140193666]
We propose a traditional-neural mixed coding framework that takes advantage of both traditional codecs and neural networks (NNs)
The framework is optimized by ensuring that a transportation-efficient semantic representation of the video is preserved.
We build a low-bitrate video understanding benchmark with three downstream tasks on eight datasets, demonstrating the notable superiority of our approach.
arXiv Detail & Related papers (2022-02-06T16:29:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.