論文の概要: U-ViLAR: Uncertainty-Aware Visual Localization for Autonomous Driving via Differentiable Association and Registration
- arxiv url: http://arxiv.org/abs/2507.04503v1
- Date: Sun, 06 Jul 2025 18:40:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.215176
- Title: U-ViLAR: Uncertainty-Aware Visual Localization for Autonomous Driving via Differentiable Association and Registration
- Title(参考訳): U-ViLAR:識別可能なアソシエーションと登録による自律運転のための不確かさを意識した視覚的位置決め
- Authors: Xiaofan Li, Zhihao Xu, Chenming Wu, Zhao Yang, Yumeng Zhang, Jiang-Jiang Liu, Haibao Yu, Fan Duan, Xiaoqing Ye, Yuan Wang, Shirui Li, Xun Sun, Ji Wan, Jun Wang,
- Abstract要約: U-ViLARは、新しい不確実性を認識した視覚的ローカライゼーションフレームワークである。
ハイデフィニション(HD)マップやナビゲーションマップを使った適応的なローカライゼーションを可能にする。
当社のモデルでは、大規模自動運転車両の厳格なテストが実施されている。
- 参考スコア(独自算出の注目度): 25.74646789843283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate localization using visual information is a critical yet challenging task, especially in urban environments where nearby buildings and construction sites significantly degrade GNSS (Global Navigation Satellite System) signal quality. This issue underscores the importance of visual localization techniques in scenarios where GNSS signals are unreliable. This paper proposes U-ViLAR, a novel uncertainty-aware visual localization framework designed to address these challenges while enabling adaptive localization using high-definition (HD) maps or navigation maps. Specifically, our method first extracts features from the input visual data and maps them into Bird's-Eye-View (BEV) space to enhance spatial consistency with the map input. Subsequently, we introduce: a) Perceptual Uncertainty-guided Association, which mitigates errors caused by perception uncertainty, and b) Localization Uncertainty-guided Registration, which reduces errors introduced by localization uncertainty. By effectively balancing the coarse-grained large-scale localization capability of association with the fine-grained precise localization capability of registration, our approach achieves robust and accurate localization. Experimental results demonstrate that our method achieves state-of-the-art performance across multiple localization tasks. Furthermore, our model has undergone rigorous testing on large-scale autonomous driving fleets and has demonstrated stable performance in various challenging urban scenarios.
- Abstract(参考訳): 特に、近隣の建物や建設現場がGNSS(Global Navigation Satellite System)信号の品質を著しく低下させる都市環境では、視覚情報を用いた正確なローカライゼーションが重要な課題である。
この問題は、GNSS信号が信頼できないシナリオにおける視覚的ローカライゼーション技術の重要性を浮き彫りにしている。
本稿では,HDマップやナビゲーションマップを用いた適応的ローカライゼーションを実現しつつ,これらの課題に対処するための新しい不確実性を考慮した視覚的ローカライゼーションフレームワークであるU-ViLARを提案する。
具体的には、まず、入力された視覚データから特徴を抽出し、それらをBird's-Eye-View (BEV)空間にマッピングし、マップ入力との空間整合性を高める。
以下に紹介する。
イ 知覚の不確実性による誤りを緩和する知覚不確実性誘導協会及び
ロ ローカライゼーションの不確実性によるエラーを低減する不確実性誘導登録
粒度の粗大な局所化能力と,粒度の細かい精密な位置化能力とを効果的にバランスさせることにより,ロバストかつ高精度な位置化を実現する。
実験により,本手法は複数の局所化タスクにまたがる最先端性能を実現することを示す。
さらに,大規模自動運転車両の厳密な試験を行い,様々な挑戦的な都市シナリオにおいて安定した性能を示した。
関連論文リスト
- NOVA: Navigation via Object-Centric Visual Autonomy for High-Speed Target Tracking in Unstructured GPS-Denied Environments [56.35569661650558]
我々はNOVAというオブジェクト中心のフレームワークを導入し、ロバストな目標追跡と衝突認識ナビゲーションを可能にした。
グローバルマップを構築するのではなく、NOVAはターゲットの参照フレーム内での知覚、推定、制御を定式化する。
我々は,都市迷路や森林の小道,間欠的なGPS損失を伴う建物内の繰り返し遷移など,現実の挑戦的なシナリオにまたがってNOVAを検証する。
論文 参考訳(メタデータ) (2025-06-23T14:28:30Z) - SegLocNet: Multimodal Localization Network for Autonomous Driving via Bird's-Eye-View Segmentation [0.0]
SegLocNetはセマンティックセグメンテーションを用いて正確なローカライゼーションを実現するマルチモーダルフリーなローカライゼーションネットワークである。
本手法は,都市環境におけるエゴポーズを,一般化に頼ることなく正確に推定することができる。
私たちのコードと事前訓練されたモデルは公開されます。
論文 参考訳(メタデータ) (2025-02-27T13:34:55Z) - MapLocNet: Coarse-to-Fine Feature Registration for Visual Re-Localization in Navigation Maps [8.373285397029884]
伝統的なローカライゼーションアプローチは、正確に注釈付けされたランドマークからなる高定義(HD)マップに依存している。
本稿では,画像登録にインスパイアされたトランスフォーマーを用いたニューラルリローカライズ手法を提案する。
提案手法は, nuScenes と Argoverse の両方のデータセット上で, 現在最先端の OrienterNet を著しく上回っている。
論文 参考訳(メタデータ) (2024-07-11T14:51:18Z) - Monocular Localization with Semantics Map for Autonomous Vehicles [8.242967098897408]
低レベルのテクスチャ機能の代わりに安定したセマンティック機能を利用する新しい視覚的セマンティックローカライゼーションアルゴリズムを提案する。
まず、セマンティックマップは、カメラやLiDARセンサーを使用して、グラウンドマーカー、レーンライン、ポールなどのセマンティックオブジェクトを検出してオフラインで構築される。
オンラインの視覚的ローカライゼーションは意味的特徴とマップオブジェクトのデータアソシエーションによって行われる。
論文 参考訳(メタデータ) (2024-06-06T08:12:38Z) - Spatial-Aware Token for Weakly Supervised Object Localization [137.0570026552845]
タスク固有の空間認識トークンを,弱教師付き方式で条件定位に提案する。
実験の結果、SATはCUB-200とImageNetの両方で、98.45%と73.13%のGT-known Locで最先端のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2023-03-18T15:38:17Z) - Consistency-Aware Anchor Pyramid Network for Crowd Localization [167.93943981468348]
クラウドローカライゼーションは、群衆シナリオにおける人間の空間的位置を予測することを目的としている。
本稿では,各画像領域のアンカー密度を適応的に決定するアンカーピラミッド方式を提案する。
論文 参考訳(メタデータ) (2022-12-08T04:32:01Z) - Robust Monocular Localization in Sparse HD Maps Leveraging Multi-Task
Uncertainty Estimation [28.35592701148056]
スライドウインドウポーズグラフに基づく新しい単分子局在化手法を提案する。
効率的なマルチタスク不確実性認識モジュールを提案する。
我々の手法は、挑戦的な都市シナリオにおけるロバストで正確な6Dローカライズを可能にする。
論文 参考訳(メタデータ) (2021-10-20T13:46:15Z) - Deep Multi-Task Learning for Joint Localization, Perception, and
Prediction [68.50217234419922]
本稿では,ローカライズエラー下の最先端の自律性スタックで発生する問題について検討する。
我々は,認識,予測,局所化を共同で行うシステムの設計を行う。
本アーキテクチャでは,両タスク間の計算を再利用し,効率よくローカライズエラーを修正できる。
論文 参考訳(メタデータ) (2021-01-17T17:20:31Z) - DA4AD: End-to-End Deep Attention-based Visual Localization for
Autonomous Driving [19.02445537167235]
本稿では,自律運転のための新しい注目機能に基づく視覚的位置決めフレームワークを提案する。
提案手法は,LiDARに基づくローカライズソリューションと比較して,競合するローカライズ精度を実現する。
論文 参考訳(メタデータ) (2020-03-06T04:34:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。