Unveiling the Potential of Diffusion Large Language Model in Controllable Generation
- URL: http://arxiv.org/abs/2507.04504v1
- Date: Sun, 06 Jul 2025 18:41:34 GMT
- Title: Unveiling the Potential of Diffusion Large Language Model in Controllable Generation
- Authors: Zhen Xiong, Yujun Cai, Zhecheng Li, Yiwei Wang,
- Abstract summary: Diffusion models, originally developed for image generation, have emerged as a promising alternative to autoregressive large language models (LLMs)<n>We present a theoretical analysis comparing autoregressive and masked diffusion LLMs (dLLMs)<n>We propose textbfSelf-adaptivetexttextbfSchema textbfScaf, a novel framework that enables dLLMs to generate structured outputs while maintaining semantic fidelity and accelerating inference.
- Score: 11.181783720439563
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion models, originally developed for image generation, have emerged as a promising alternative to autoregressive large language models (LLMs). We present a theoretical analysis comparing autoregressive and masked diffusion LLMs, revealing that the intrinsic bidirectional attention mechanism of diffusion LLMs (dLLMs) enables superior context modeling and generation controllability. However, existing dLLM applications face significant challenges in controllable generation: the native multi-step denoising process exhibits high sensitivity to sequence length, elevated hallucination rates, and prohibitive inference costs without specialized optimizations. To address these limitations, we propose \textbf{S}elf-adaptive \textbf{S}chema \textbf{S}caffolding ($S^3$), a novel framework that enables dLLMs to generate structured outputs (e.g., JSON) while maintaining semantic fidelity and accelerating inference. Our approach injects the target schema structure into the output context, reducing unnecessary computation while improving controllability. Extensive experiments demonstrate that $S^3$ achieves substantial improvements: 65\% increase in structural adherence, 48\% enhancement in content fidelity, and 17\% reduction in hallucination rates compared to baseline. These results establish both theoretical foundations and practical pathways for deploying diffusion models in controllable text generation tasks. Code and data will be publicly released.
Related papers
- Beyond Fixed: Variable-Length Denoising for Diffusion Large Language Models [74.15250326312179]
Diffusion Large Language Models offer efficient parallel generation and capable global modeling.<n>The dominant application ofDLLMs is hindered by the need for a statically predefined generation length.<n>We introduce DAEDAL, a novel training-free denoising strategy that enables Dynamic Adaptive Length Expansion.
arXiv Detail & Related papers (2025-08-01T17:56:07Z) - FUDOKI: Discrete Flow-based Unified Understanding and Generation via Kinetic-Optimal Velocities [76.46448367752944]
multimodal large language models (MLLMs) unify visual understanding and image generation within a single framework.<n>Most existing MLLMs rely on autore (AR) architectures, which impose inherent limitations on future development.<n>We introduce FUDOKI, a unified multimodal model purely based on discrete flow matching.
arXiv Detail & Related papers (2025-05-26T15:46:53Z) - CtrlDiff: Boosting Large Diffusion Language Models with Dynamic Block Prediction and Controllable Generation [7.250878248686215]
Diffusion-based language models have emerged as a compelling alternative due to their powerful parallel generation capabilities and inherent editability.<n>We propose CtrlDiff, a dynamic and controllable semi-autoregressive framework that adaptively determines the size of each generation block based on local semantics.
arXiv Detail & Related papers (2025-05-20T14:52:41Z) - d1: Scaling Reasoning in Diffusion Large Language Models via Reinforcement Learning [31.531278643184656]
Recent large language models (LLMs) have demonstrated strong reasoning capabilities that benefits from online reinforcement learning (RL)<n>We propose d1, a framework to adapt pre-trained masked dLLMs into reasoning models via a combination of supervised finetuning (SFT) and RL.<n>We find that d1 yields the best performance and significantly improves performance of a state-of-the-art dLLM.
arXiv Detail & Related papers (2025-04-16T16:08:45Z) - Unified Enhancement of the Generalization and Robustness of Language Models via Bi-Stage Optimization [2.502393972789905]
We propose a bi-stage optimization framework to uniformly enhance both the generalization and robustness of LMs.<n>We show that our method significantly improves the generalization and robustness of LMs compared to other existing methods.
arXiv Detail & Related papers (2025-03-19T13:50:36Z) - Constrained Discrete Diffusion [61.81569616239755]
This paper introduces Constrained Discrete Diffusion (CDD), a novel integration of differentiable constraint optimization within the diffusion process.<n>CDD directly imposes constraints into the discrete diffusion sampling process, resulting in a training-free and effective approach.
arXiv Detail & Related papers (2025-03-12T19:48:12Z) - Steering Masked Discrete Diffusion Models via Discrete Denoising Posterior Prediction [88.65168366064061]
We introduce Discrete Denoising Posterior Prediction (DDPP), a novel framework that casts the task of steering pre-trained MDMs as a problem of probabilistic inference.
Our framework leads to a family of three novel objectives that are all simulation-free, and thus scalable.
We substantiate our designs via wet-lab validation, where we observe transient expression of reward-optimized protein sequences.
arXiv Detail & Related papers (2024-10-10T17:18:30Z) - Quantized Embedding Vectors for Controllable Diffusion Language Models [1.3287140837287783]
Quantized Embedding Controllable Diffusion Language Model improves controllability, portability, and inference speed of language models.
QE-CDLM builds upon the recent successful controllable DLMs by remodeling the task-specific embedding space via quantization.
arXiv Detail & Related papers (2024-02-15T17:02:48Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
Two prominent generative models, Generative Adversarial Networks (GANs) and Variational AutoEncoders (VAEs)
GANs suffer from unstable optimization, while VAEs are prone to posterior collapse and over-smoothed generations.
We present a conditional denoising diffusion model, which includes a sequence encoder, a cross-attentive denoising decoder, and a step-wise diffuser.
arXiv Detail & Related papers (2023-04-22T15:32:59Z) - A Cheaper and Better Diffusion Language Model with Soft-Masked Noise [62.719656543880596]
Masked-Diffuse LM is a novel diffusion model for language modeling, inspired by linguistic features in languages.
Specifically, we design a linguistic-informed forward process which adds corruptions to the text through strategically soft-masking to better noise the textual data.
We demonstrate that our Masked-Diffuse LM can achieve better generation quality than the state-of-the-art diffusion models with better efficiency.
arXiv Detail & Related papers (2023-04-10T17:58:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.