論文の概要: SPIRA: Building an Intelligent System for Respiratory Insufficiency Detection
- arxiv url: http://arxiv.org/abs/2507.04548v1
- Date: Sun, 06 Jul 2025 21:42:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.231194
- Title: SPIRA: Building an Intelligent System for Respiratory Insufficiency Detection
- Title(参考訳): SPIRA: 呼吸不全検出のためのインテリジェントシステムの構築
- Authors: Renato Cordeiro Ferreira, Dayanne Gomes, Vitor Tamae, Francisco Wernke, Alfredo Goldman,
- Abstract要約: 本稿では,音声から呼吸不全を検出するインテリジェントシステムであるSPIRAの構築経験を報告する。
同じアーキテクチャの次の2つの実装で直面する課題をコンパイルする。
- 参考スコア(独自算出の注目度): 1.875782323187985
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Respiratory insufficiency is a medic symptom in which a person gets a reduced amount of oxygen in the blood. This paper reports the experience of building SPIRA: an intelligent system for detecting respiratory insufficiency from voice. It compiles challenges faced in two succeeding implementations of the same architecture, summarizing lessons learned on data collection, training, and inference for future projects in similar systems.
- Abstract(参考訳): 呼吸不全 (respiratory insufficiency) とは、血液中の酸素量が減少する症状である。
本稿では,音声から呼吸不全を検出するインテリジェントシステムであるSPIRAの構築経験を報告する。
同じアーキテクチャの次の2つの実装で直面する課題をコンパイルし、データ収集、トレーニング、そして同様のシステムの将来のプロジェクトに対する推論で学んだ教訓を要約する。
関連論文リスト
- AutoRG-Brain: Grounded Report Generation for Brain MRI [57.22149878985624]
放射線学者は、大量の画像を日々のベースで解釈し、対応するレポートを生成する責任を負う。
この要求される作業負荷は、人間のエラーのリスクを高め、治療の遅れ、医療費の増加、収益損失、運用上の不効率につながる可能性がある。
地盤自動報告生成(AutoRG)に関する一連の研究を開始した。
このシステムは、脳の構造の明細化、異常の局所化、そしてよく組織化された発見の生成をサポートする。
論文 参考訳(メタデータ) (2024-07-23T17:50:00Z) - Rene: A Pre-trained Multi-modal Architecture for Auscultation of Respiratory Diseases [5.810320353233697]
本稿では,呼吸音の認識に適した大規模モデルであるReneを紹介する。
我々の革新的なアプローチは、事前訓練された音声認識モデルを用いて呼吸音を処理している。
我々は,Reneアーキテクチャを用いた実時間呼吸音識別システムを開発した。
論文 参考訳(メタデータ) (2024-05-13T03:00:28Z) - A Machine Learning Approach for Delineating Similar Sound Symptoms of
Respiratory Conditions on a Smartphone [0.0]
我々は、現代のスマートフォンの計算能力と記憶能力の改善を活用し、機械学習アルゴリズムを用いて呼吸音の症状を識別する。
携帯電話上でのこれらのアルゴリズムの性能は、スマートフォンがリアルタイムシナリオにおける呼吸症状の認識と識別のための代替ツールであることを示している。
論文 参考訳(メタデータ) (2021-10-15T07:24:30Z) - Early prediction of respiratory failure in the intensive care unit [1.8312530927511608]
呼吸器系不全の早期予測は、呼吸器系不全のリスクを患者に警告する可能性がある。
本研究では,中等度/重度呼吸不全を事前に8時間まで予測する早期警報システムを提案する。
論文 参考訳(メタデータ) (2021-05-12T15:20:09Z) - Respiratory Sound Classification Using Long-Short Term Memory [62.997667081978825]
本稿では,呼吸器疾患の分類に関連して,音の分類を行おうとする際の問題点について検討する。
このようなタスクをどのように実装できるかを特定するために、ディープラーニングと長期短期記憶ネットワークの使用の検討を行う。
論文 参考訳(メタデータ) (2020-08-06T23:11:57Z) - Transforming unstructured voice and text data into insight for paramedic
emergency service using recurrent and convolutional neural networks [68.8204255655161]
救急隊員は救急車内で限られた時間内に救命判断をしなければならないことが多い。
本研究の目的は、音声とテキストデータを自動的に融合して、救急隊員に適切な状況認識情報を提供することである。
論文 参考訳(メタデータ) (2020-05-30T06:47:02Z) - Deep Learning for Automatic Pneumonia Detection [72.55423549641714]
肺炎は小児の主要な死因であり、世界でも最多死亡率の1つである。
コンピュータ支援診断システムは診断精度を向上させる可能性を示した。
本研究では, 単発検出, 圧縮励起深部畳み込みニューラルネットワーク, 拡張, マルチタスク学習に基づく肺炎領域検出のための計算手法を開発した。
論文 参考訳(メタデータ) (2020-05-28T10:54:34Z) - CNN-MoE based framework for classification of respiratory anomalies and
lung disease detection [33.45087488971683]
本稿では,聴取分析のための頑健な深層学習フレームワークを提示し,検討する。
呼吸周期の異常を分類し、呼吸音の記録から病気を検出することを目的としている。
論文 参考訳(メタデータ) (2020-04-04T21:45:06Z) - Robust Deep Learning Framework For Predicting Respiratory Anomalies and
Diseases [26.786743524562322]
本稿では,呼吸音の記録から呼吸器疾患を検出するための,堅牢な深層学習フレームワークを提案する。
バックエンドのディープラーニングモデルは、特徴を呼吸器疾患または異常のクラスに分類する。
ICBHIベンチマークを用いて実験を行い, 音の分類能力を評価する。
論文 参考訳(メタデータ) (2020-01-21T15:26:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。