Exceptional point rings and $PT$-symmetry in the non-Hermitian XY model
- URL: http://arxiv.org/abs/2507.04558v1
- Date: Sun, 06 Jul 2025 22:23:05 GMT
- Title: Exceptional point rings and $PT$-symmetry in the non-Hermitian XY model
- Authors: Robert A. Henry, D. C. Liu, Murray T. Batchelor,
- Abstract summary: We show that by extending the XY model's anisotropy parameter $lambda$ to complex values, it is possible for two of the quasi-energies to become degenerate.<n>In the non-Hermitian XY model these quasi-energy degeneracies give rise to exceptional points (EPs) where two of the eigenvalues and their corresponding eigenvectors coalesce.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The XY spin chain is a paradigmatic example of a model solved by free fermions, in which the energy eigenspectrum is built from combinations of quasi-energies. In this article we show that by extending the XY model's anisotropy parameter $\lambda$ to complex values, it is possible for two of the quasi-energies to become degenerate. In the non-Hermitian XY model these quasi-energy degeneracies give rise to exceptional points (EPs) where two of the eigenvalues and their corresponding eigenvectors coalesce. The distinct $\lambda$ values at which EPs appear form concentric rings in the complex plane which are shown in the infinite system size limit to converge to the unit circle coinciding with the boundary between distinct topological phases. The non-Hermitian model is also seen to possess a line of broken $PT$ symmetry along the pure imaginary $\lambda$-axis. For finite systems, there are four EP values on this broken $PT$-symmetric line if the system size is a multiple of 4.
Related papers
- Meson spectroscopy of exotic symmetries of Ising criticality in Rydberg atom arrays [39.58317527488534]
Coupling two Ising chains in a ladder leads to an even richer $mathcalD(1)_8$ symmetries.<n>Here, we probe these emergent symmetries in a Rydberg atom processing unit, leveraging its geometry to realize both chain and ladder configurations.
arXiv Detail & Related papers (2025-06-26T14:19:30Z) - Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
In the past decade, the concept of symmetry-enriched topological (SET) phases was proposed and their classifications have been systematically studied for bosonic systems.<n>How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Emergence of non-Abelian SU(2) invariance in Abelian frustrated
fermionic ladders [37.69303106863453]
We consider a system of interacting spinless fermions on a two-leg triangular ladder with $pi/2$ magnetic flux per triangular plaquette.
Microscopically, the system exhibits a U(1) symmetry corresponding to the conservation of total fermionic charge, and a discrete $mathbbZ$ symmetry.
At the intersection of the three phases, the system features a critical point with an emergent SU(2) symmetry.
arXiv Detail & Related papers (2023-05-11T15:57:27Z) - Effects of detuning on $\mathcal{PT}$-symmetric, tridiagonal,
tight-binding models [0.0]
Non-Hermitian, tight-binding $mathcalPT$-symmetric models are extensively studied in the literature.
Here, we investigate two forms of non-Hermitian Hamiltonians to study the $mathcalPT$-symmetry breaking thresholds and features of corresponding surfaces of exceptional points (EPs)
Taken together, our results provide a detailed understanding of detuned tight-binding models with a pair of gain-loss potentials.
arXiv Detail & Related papers (2023-02-26T01:36:59Z) - Exceptional Points in the Baxter-Fendley Free Parafermion Model [0.0]
Free parafermions are a simple generalisation of the idea to $Z(N)$-symmetric clock models.
In 1989 Baxter discovered a non-Hermitian but $PT$-symmetric model directly generalising the Ising chain.
A series of exceptional points emerges, where the quasienergies defining the free spectrum become degenerate.
arXiv Detail & Related papers (2023-01-26T10:57:22Z) - Exact solution of a non-Hermitian $\mathscr{PT}$-symmetric Heisenberg
spin chain [0.0]
We construct the exact solution of a non-Hermitian $mathscrPT$-symmetric isotropic Heisenberg spin chain with integrable boundary fields.
We find that both $A$ and $B$ type phases can be further divided into sub-phases which exhibit different ground states.
arXiv Detail & Related papers (2023-01-15T02:32:44Z) - Towards Antisymmetric Neural Ansatz Separation [48.80300074254758]
We study separations between two fundamental models of antisymmetric functions, that is, functions $f$ of the form $f(x_sigma(1), ldots, x_sigma(N))
These arise in the context of quantum chemistry, and are the basic modeling tool for wavefunctions of Fermionic systems.
arXiv Detail & Related papers (2022-08-05T16:35:24Z) - Non-Hermitian $C_{NH} = 2$ Chern insulator protected by generalized
rotational symmetry [85.36456486475119]
A non-Hermitian system is protected by the generalized rotational symmetry $H+=UHU+$ of the system.
Our finding paves the way towards novel non-Hermitian topological systems characterized by large values of topological invariants.
arXiv Detail & Related papers (2021-11-24T15:50:22Z) - $\mathcal{PT}$-symmetry breaking in a Kitaev chain with one pair of
gain-loss potentials [0.0]
Parity-time symmetric systems are governed by non-Hermitian Hamiltonians with exceptional-point (EP) degeneracies.
Here, we obtain the $mathcalPT$-threshold for a one-dimensional, finite Kitaev chain.
In particular, for an even chain with zero on-site potential, we find a re-entrant $mathcalPT$-symmetric phase bounded by second-order EP contours.
arXiv Detail & Related papers (2021-03-12T03:10:45Z) - Fermion and meson mass generation in non-Hermitian Nambu--Jona-Lasinio
models [77.34726150561087]
We investigate the effects of non-Hermiticity on interacting fermionic systems.
We do this by including non-Hermitian bilinear terms into the 3+1 dimensional Nambu--Jona-Lasinio (NJL) model.
arXiv Detail & Related papers (2021-02-02T13:56:11Z) - Non-Hermitian extension of the Nambu--Jona-Lasinio model in 3+1 and 1+1
dimensions [68.8204255655161]
We present a non-Hermitian PT-symmetric extension of the Nambu--Jona-Lasinio model of quantum chromodynamics in 3+1 and 1+1 dimensions.
We find that in both cases, in 3+1 and in 1+1 dimensions, the inclusion of a non-Hermitian bilinear term can contribute to the generated mass.
arXiv Detail & Related papers (2020-04-08T14:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.