Evaluating LLMs on Real-World Forecasting Against Expert Forecasters
- URL: http://arxiv.org/abs/2507.04562v3
- Date: Mon, 04 Aug 2025 20:48:35 GMT
- Title: Evaluating LLMs on Real-World Forecasting Against Expert Forecasters
- Authors: Janna Lu,
- Abstract summary: Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks, but their ability to forecast future events remains understudied.<n>I evaluate state-of-the-art LLMs on 464 forecasting questions from Metaculus, comparing their performance against top forecasters.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated remarkable capabilities across diverse tasks, but their ability to forecast future events remains understudied. A year ago, large language models struggle to come close to the accuracy of a human crowd. I evaluate state-of-the-art LLMs on 464 forecasting questions from Metaculus, comparing their performance against top forecasters. Frontier models achieve Brier scores that ostensibly surpass the human crowd but still significantly underperform a group of experts.
Related papers
- Large Language Models Can Self-Improve in Long-context Reasoning [100.52886241070907]
Large language models (LLMs) have achieved substantial progress in processing long contexts but still struggle with long-context reasoning.
We propose ours, an approach specifically designed for this purpose.
ours achieves superior performance compared to prior approaches that depend on data produced by human experts or advanced models.
arXiv Detail & Related papers (2024-11-12T19:53:00Z) - Abstract2Appendix: Academic Reviews Enhance LLM Long-Context Capabilities [6.0211447492146]
Large language models (LLMs) have shown remarkable performance across various tasks, yet their ability to handle long-context reading remains challenging.
This study explores the effectiveness of leveraging high-quality academic peer review data for fine-tuning LLMs to enhance their long-context capabilities.
arXiv Detail & Related papers (2024-11-07T22:57:02Z) - A Survey on Human Preference Learning for Large Language Models [81.41868485811625]
The recent surge of versatile large language models (LLMs) largely depends on aligning increasingly capable foundation models with human intentions by preference learning.
This survey covers the sources and formats of preference feedback, the modeling and usage of preference signals, as well as the evaluation of the aligned LLMs.
arXiv Detail & Related papers (2024-06-17T03:52:51Z) - Can Language Models Use Forecasting Strategies? [14.332379032371612]
We describe experiments using a novel dataset of real world events and associated human predictions.
We find that models still struggle to make accurate predictions about the future.
arXiv Detail & Related papers (2024-06-06T19:01:42Z) - Wisdom of the Silicon Crowd: LLM Ensemble Prediction Capabilities Rival Human Crowd Accuracy [1.999925939110439]
We use an ensemble approach consisting of a crowd of twelve large language models (LLMs)
We compare the aggregated LLM predictions on 31 binary questions to that of a crowd of human forecasters from a three-month forecasting tournament.
We find that both models' forecasting accuracy benefits from exposure to the median human prediction as information.
arXiv Detail & Related papers (2024-02-29T17:27:59Z) - Large Language Models: A Survey [66.39828929831017]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.<n>LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - Humans vs Large Language Models: Judgmental Forecasting in an Era of Advanced AI [0.0]
This study investigates the forecasting accuracy of human experts versus Large Language Models (LLMs) in the retail sector.
Our analysis centered on the effect of the following factors on forecasters performance: the supporting statistical model (baseline and advanced), whether the product was on promotion, and the nature of external impact.
arXiv Detail & Related papers (2023-12-12T02:28:12Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Large Language Models are Not Yet Human-Level Evaluators for Abstractive
Summarization [66.08074487429477]
We investigate the stability and reliability of large language models (LLMs) as automatic evaluators for abstractive summarization.
We find that while ChatGPT and GPT-4 outperform the commonly used automatic metrics, they are not ready as human replacements.
arXiv Detail & Related papers (2023-05-22T14:58:13Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
Large language models (LLMs) have shown promise for automatic summarization but the reasons behind their successes are poorly understood.
We find instruction tuning, and not model size, is the key to the LLM's zero-shot summarization capability.
arXiv Detail & Related papers (2023-01-31T18:46:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.