Humans vs Large Language Models: Judgmental Forecasting in an Era of Advanced AI
- URL: http://arxiv.org/abs/2312.06941v2
- Date: Fri, 17 May 2024 06:35:19 GMT
- Title: Humans vs Large Language Models: Judgmental Forecasting in an Era of Advanced AI
- Authors: MAhdi Abolghasemi, Odkhishig Ganbold, Kristian Rotaru,
- Abstract summary: This study investigates the forecasting accuracy of human experts versus Large Language Models (LLMs) in the retail sector.
Our analysis centered on the effect of the following factors on forecasters performance: the supporting statistical model (baseline and advanced), whether the product was on promotion, and the nature of external impact.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study investigates the forecasting accuracy of human experts versus Large Language Models (LLMs) in the retail sector, particularly during standard and promotional sales periods. Utilizing a controlled experimental setup with 123 human forecasters and five LLMs, including ChatGPT4, ChatGPT3.5, Bard, Bing, and Llama2, we evaluated forecasting precision through Mean Absolute Percentage Error. Our analysis centered on the effect of the following factors on forecasters performance: the supporting statistical model (baseline and advanced), whether the product was on promotion, and the nature of external impact. The findings indicate that LLMs do not consistently outperform humans in forecasting accuracy and that advanced statistical forecasting models do not uniformly enhance the performance of either human forecasters or LLMs. Both human and LLM forecasters exhibited increased forecasting errors, particularly during promotional periods and under the influence of positive external impacts. Our findings call for careful consideration when integrating LLMs into practical forecasting processes.
Related papers
- Scaling Laws for Predicting Downstream Performance in LLMs [75.28559015477137]
This work focuses on the pre-training loss as a more-efficient metric for performance estimation.
We extend the power law analytical function to predict domain-specific pre-training loss based on FLOPs across data sources.
We employ a two-layer neural network to model the non-linear relationship between multiple domain-specific loss and downstream performance.
arXiv Detail & Related papers (2024-10-11T04:57:48Z) - Bayesian Statistical Modeling with Predictors from LLMs [5.5711773076846365]
State of the art large language models (LLMs) have shown impressive performance on a variety of benchmark tasks.
This raises questions about the human-likeness of LLM-derived information.
arXiv Detail & Related papers (2024-06-13T11:33:30Z) - Can Language Models Use Forecasting Strategies? [14.332379032371612]
We describe experiments using a novel dataset of real world events and associated human predictions.
We find that models still struggle to make accurate predictions about the future.
arXiv Detail & Related papers (2024-06-06T19:01:42Z) - Wisdom of the Silicon Crowd: LLM Ensemble Prediction Capabilities Rival Human Crowd Accuracy [1.999925939110439]
We use an ensemble approach consisting of a crowd of twelve large language models (LLMs)
We compare the aggregated LLM predictions on 31 binary questions to that of a crowd of human forecasters from a three-month forecasting tournament.
We find that both models' forecasting accuracy benefits from exposure to the median human prediction as information.
arXiv Detail & Related papers (2024-02-29T17:27:59Z) - AI-Augmented Predictions: LLM Assistants Improve Human Forecasting Accuracy [3.7865171120254355]
Large language models (LLMs) match and sometimes exceed human performance in many domains.
This study explores the potential of LLMs to augment human judgement in a forecasting task.
arXiv Detail & Related papers (2024-02-12T18:14:43Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
We introduce Exloss, a novel loss function that performs asymmetric optimization and highlights extreme values to obtain accurate extreme weather forecast.
We also introduce ExBooster, which captures the uncertainty in prediction outcomes by employing multiple random samples.
Our solution can achieve state-of-the-art performance in extreme weather prediction, while maintaining the overall forecast accuracy comparable to the top medium-range forecast models.
arXiv Detail & Related papers (2024-02-02T10:34:13Z) - PACE-LM: Prompting and Augmentation for Calibrated Confidence Estimation
with GPT-4 in Cloud Incident Root Cause Analysis [17.362895895214344]
Large language models (LLMs) are used to help humans identify the root causes of cloud incidents.
We propose to perform confidence estimation for the predictions to help on-call engineers make decisions on whether to adopt the model prediction.
We show that our method is able to produce calibrated confidence estimates for predicted root causes, validate the usefulness of retrieved historical data and the prompting strategy.
arXiv Detail & Related papers (2023-09-11T21:24:00Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
Expected predictive information gain (EPIG) is an acquisition function that measures information gain in the space of predictions rather than parameters.
EPIG leads to stronger predictive performance compared with BALD across a range of datasets and models.
arXiv Detail & Related papers (2023-04-17T10:59:57Z) - Measuring Causal Effects of Data Statistics on Language Model's
`Factual' Predictions [59.284907093349425]
Large amounts of training data are one of the major reasons for the high performance of state-of-the-art NLP models.
We provide a language for describing how training data influences predictions, through a causal framework.
Our framework bypasses the need to retrain expensive models and allows us to estimate causal effects based on observational data alone.
arXiv Detail & Related papers (2022-07-28T17:36:24Z) - Towards More Fine-grained and Reliable NLP Performance Prediction [85.78131503006193]
We make two contributions to improving performance prediction for NLP tasks.
First, we examine performance predictors for holistic measures of accuracy like F1 or BLEU.
Second, we propose methods to understand the reliability of a performance prediction model from two angles: confidence intervals and calibration.
arXiv Detail & Related papers (2021-02-10T15:23:20Z) - Improving Event Duration Prediction via Time-aware Pre-training [90.74988936678723]
We introduce two effective models for duration prediction.
One model predicts the range/unit where the duration value falls in (R-pred); and the other predicts the exact duration value E-pred.
Our best model -- E-pred, substantially outperforms previous work, and captures duration information more accurately than R-pred.
arXiv Detail & Related papers (2020-11-05T01:52:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.