論文の概要: Learning Robust Stereo Matching in the Wild with Selective Mixture-of-Experts
- arxiv url: http://arxiv.org/abs/2507.04631v1
- Date: Mon, 07 Jul 2025 03:19:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.264176
- Title: Learning Robust Stereo Matching in the Wild with Selective Mixture-of-Experts
- Title(参考訳): 自然界におけるロバストステレオマッチングの学習
- Authors: Yun Wang, Longguang Wang, Chenghao Zhang, Yongjian Zhang, Zhanjie Zhang, Ao Ma, Chenyou Fan, Tin Lun Lam, Junjie Hu,
- Abstract要約: SMoEStereoは,Low-Rank Adaptation (LoRA) とMixture-of-Experts (MoE) モジュールの融合により,VFMをステレオマッチングに適用する新しいフレームワークである。
提案手法は,データセット固有の適応を伴わない複数のベンチマークに対して,最先端のクロスドメインと共同一般化を示す。
- 参考スコア(独自算出の注目度): 29.52183168979229
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, learning-based stereo matching networks have advanced significantly. However, they often lack robustness and struggle to achieve impressive cross-domain performance due to domain shifts and imbalanced disparity distributions among diverse datasets. Leveraging Vision Foundation Models (VFMs) can intuitively enhance the model's robustness, but integrating such a model into stereo matching cost-effectively to fully realize their robustness remains a key challenge. To address this, we propose SMoEStereo, a novel framework that adapts VFMs for stereo matching through a tailored, scene-specific fusion of Low-Rank Adaptation (LoRA) and Mixture-of-Experts (MoE) modules. SMoEStereo introduces MoE-LoRA with adaptive ranks and MoE-Adapter with adaptive kernel sizes. The former dynamically selects optimal experts within MoE to adapt varying scenes across domains, while the latter injects inductive bias into frozen VFMs to improve geometric feature extraction. Importantly, to mitigate computational overhead, we further propose a lightweight decision network that selectively activates MoE modules based on input complexity, balancing efficiency with accuracy. Extensive experiments demonstrate that our method exhibits state-of-the-art cross-domain and joint generalization across multiple benchmarks without dataset-specific adaptation. The code is available at \textcolor{red}{https://github.com/cocowy1/SMoE-Stereo}.
- Abstract(参考訳): 近年,学習型ステレオマッチングネットワークが著しく進歩している。
しかしながら、ドメインシフトや、さまざまなデータセット間の不均衡な分散のために、堅牢性やドメイン間パフォーマンスの達成に苦慮することが多い。
ビジョンファウンデーションモデル(VFM)の活用は直感的にモデルのロバスト性を高めることができるが、それらのロバスト性を完全に実現するために、そのようなモデルをステレオマッチングに効果的に統合することは重要な課題である。
SMoEStereoは,ローランド適応(LoRA)とMixture-of-Experts(MoE)モジュールの融合により,ステレオマッチングにVFMを適用した新しいフレームワークである。
SMoEStereoは適応的なランクを持つMoE-LoRAと適応的なカーネルサイズを持つMoE-Adapterを導入した。
前者はMoE内の最適な専門家を動的に選別し、後者は凍ったVFMに誘導バイアスを注入して幾何学的特徴抽出を改善する。
さらに、計算オーバーヘッドを軽減するために、入力複雑性に基づいてMoEモジュールを選択的に活性化し、効率と精度のバランスをとる軽量な決定ネットワークを提案する。
大規模な実験により,本手法は,データセット固有の適応を伴わずに,複数のベンチマークにまたがって最先端のクロスドメインと共同一般化を示すことが示された。
コードは \textcolor{red}{https://github.com/cocowy1/SMoE-Stereo} で公開されている。
関連論文リスト
- SAMamba: Adaptive State Space Modeling with Hierarchical Vision for Infrared Small Target Detection [12.964308630328688]
赤外線小目標検出(ISTD)は、軍事・海上・早期警戒用途における長距離監視に不可欠である。
ISTDは画像の0.15%未満のターゲットと複雑な背景との識別性が低いターゲットによって挑戦されている。
本稿では,SAM2の階層的特徴学習とMambaの選択的シーケンスモデリングを統合した新しいフレームワークSAMambaを提案する。
論文 参考訳(メタデータ) (2025-05-29T07:55:23Z) - Towards Robust Multimodal Open-set Test-time Adaptation via Adaptive Entropy-aware Optimization [9.03028904066824]
オープンセットテスト時間適応(OSTTA)は、未知のクラスを含む未ラベルのターゲットドメインに、オンラインのソース事前トレーニングモデルを適用することを目的としている。
マルチモーダルオープンセットテスト時間適応に特化して設計された新しいフレームワークであるAdaptive Entropy-aware Optimization (AEO)を提案する。
論文 参考訳(メタデータ) (2025-01-23T18:59:30Z) - Efficient and Effective Weight-Ensembling Mixture of Experts for Multi-Task Model Merging [111.8456671452411]
マルチタスク学習(MTL)は、共有モデルを利用して複数のタスクを遂行し、知識伝達を促進する。
マルチタスクモデル統合のためのウェイトエンセブリング・ミックス・オブ・エキスパート(WEMoE)手法を提案する。
WEMoEとE-WEMoEは, MTL性能, 一般化, 堅牢性の観点から, 最先端(SOTA)モデルマージ法より優れていることを示す。
論文 参考訳(メタデータ) (2024-10-29T07:16:31Z) - Modality Prompts for Arbitrary Modality Salient Object Detection [57.610000247519196]
本論文は、任意のモーダリティ・サリエント物体検出(AM SOD)の課題について述べる。
任意のモダリティ、例えばRGBイメージ、RGB-Dイメージ、RGB-D-Tイメージから有能なオブジェクトを検出することを目的としている。
AM SODの2つの基本的な課題を解明するために,新しいモード適応トランス (MAT) を提案する。
論文 参考訳(メタデータ) (2024-05-06T11:02:02Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
適応学習パラダイムの下で,textbfForgery-aware textbfAdaptive textbfVision textbfTransformer(FA-ViT)を提案する。
FA-ViTは、クロスデータセット評価において、Celeb-DFおよびDFDCデータセット上で93.83%と78.32%のAUCスコアを達成する。
論文 参考訳(メタデータ) (2023-09-20T06:51:11Z) - Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching [77.133400999703]
相関に基づくステレオマッチングは優れた性能を達成した。
固定モデルによる現在のメソッドは、さまざまなデータセットで均一に動作しない。
本稿では,ロバストなステレオマッチングのための相関を動的に計算する新しい視点を提案する。
論文 参考訳(メタデータ) (2023-07-26T09:47:37Z) - MIA-Former: Efficient and Robust Vision Transformers via Multi-grained
Input-Adaptation [14.866949449862226]
Vision Transformer (ViT) モデルは、現実のリソース制約されたデバイスに組み込むには計算コストがかかりすぎる。
入力適応型視覚変換フレームワークMIA-Formerを提案する。
提案するMIA-Formerフレームワークは,入力画像の難易度に適応した予算を効果的に配分できることを確認した。
論文 参考訳(メタデータ) (2021-12-21T22:06:24Z) - AdaStereo: An Efficient Domain-Adaptive Stereo Matching Approach [50.855679274530615]
本稿では,AdaStereoというドメイン適応型アプローチを提案する。
我々のモデルは、KITTI、Middlebury、ETH3D、DrivingStereoなど、複数のベンチマークで最先端のクロスドメイン性能を実現している。
提案手法は,様々なドメイン適応設定に対して堅牢であり,迅速な適応アプリケーションシナリオや実環境展開に容易に組み込むことができる。
論文 参考訳(メタデータ) (2021-12-09T15:10:47Z) - AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network [8.127449025802436]
本稿では,AA-RMVSNetというアダプティブアグリゲーションを備えた長短期記憶(LSTM)に基づく,新しいマルチビューステレオネットワークを提案する。
まず、コンテキスト認識の畳み込みとマルチスケールアグリゲーションを用いて、画像の特徴を適応的に抽出するビュー内アグリゲーションモジュールを提案する。
本稿では,すべてのビューにおいて,より整合性のあるペアを保存可能な,適応的なピクセルワイドビューアグリゲーションのためのビュー間コストボリュームアグリゲーションモジュールを提案する。
論文 参考訳(メタデータ) (2021-08-09T06:10:48Z) - Continual Adaptation for Deep Stereo [52.181067640300014]
本稿では,難易度と変化の激しい環境に対処するために,深層ステレオネットワークの継続的適応パラダイムを提案する。
我々のパラダイムでは、オンラインモデルに継続的に適応するために必要な学習信号は、右から左への画像ワープや従来のステレオアルゴリズムによって自己監督から得られる。
我々のネットワークアーキテクチャと適応アルゴリズムは、初めてのリアルタイム自己適応型ディープステレオシステムを実現する。
論文 参考訳(メタデータ) (2020-07-10T08:15:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。