Toward Valid Measurement Of (Un)fairness For Generative AI: A Proposal For Systematization Through The Lens Of Fair Equality of Chances
- URL: http://arxiv.org/abs/2507.04641v1
- Date: Mon, 07 Jul 2025 03:49:58 GMT
- Title: Toward Valid Measurement Of (Un)fairness For Generative AI: A Proposal For Systematization Through The Lens Of Fair Equality of Chances
- Authors: Kimberly Le Truong, Annette Zimmermann, Hoda Heidari,
- Abstract summary: Disparities in the societal harms and impacts of Generative AI (GenAI) systems highlight the critical need for effective unfairness measurement approaches.<n>We propose a novel framework for evaluating GenAI unfairness measurement through the lens of the Fair Equality of Chances framework.<n>Our framework decomposes unfairness into three core constituents: the harm/benefit resulting from the system outcomes, morally arbitrary factors that should not lead to inequality in the distribution of harm/benefit, and the morally decisive factors, which distinguish subsets that can justifiably receive different treatments.
- Score: 9.217996627263219
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Disparities in the societal harms and impacts of Generative AI (GenAI) systems highlight the critical need for effective unfairness measurement approaches. While numerous benchmarks exist, designing valid measurements requires proper systematization of the unfairness construct. Yet this process is often neglected, resulting in metrics that may mischaracterize unfairness by overlooking contextual nuances, thereby compromising the validity of the resulting measurements. Building on established (un)fairness measurement frameworks for predictive AI, this paper focuses on assessing and improving the validity of the measurement task. By extending existing conceptual work in political philosophy, we propose a novel framework for evaluating GenAI unfairness measurement through the lens of the Fair Equality of Chances framework. Our framework decomposes unfairness into three core constituents: the harm/benefit resulting from the system outcomes, morally arbitrary factors that should not lead to inequality in the distribution of harm/benefit, and the morally decisive factors, which distinguish subsets that can justifiably receive different treatments. By examining fairness through this structured lens, we integrate diverse notions of (un)fairness while accounting for the contextual dynamics that shape GenAI outcomes. We analyze factors contributing to each component and the appropriate processes to systematize and measure each in turn. This work establishes a foundation for developing more valid (un)fairness measurements for GenAI systems.
Related papers
- Fairness-Accuracy Trade-Offs: A Causal Perspective [58.06306331390586]
We analyze the tension between fairness and accuracy from a causal lens for the first time.<n>We show that enforcing a causal constraint often reduces the disparity between demographic groups.<n>We introduce a new neural approach for causally-constrained fair learning.
arXiv Detail & Related papers (2024-05-24T11:19:52Z) - Fairness in Algorithmic Recourse Through the Lens of Substantive
Equality of Opportunity [15.78130132380848]
Algorithmic recourse has gained attention as a means of giving persons agency in their interactions with AI systems.
Recent work has shown that recourse itself may be unfair due to differences in the initial circumstances of individuals.
Time is a critical element in recourse because the longer it takes an individual to act, the more the setting may change.
arXiv Detail & Related papers (2024-01-29T11:55:45Z) - Fairness Explainability using Optimal Transport with Applications in
Image Classification [0.46040036610482665]
We propose a comprehensive approach to uncover the causes of discrimination in Machine Learning applications.
We leverage Wasserstein barycenters to achieve fair predictions and introduce an extension to pinpoint bias-associated regions.
This allows us to derive a cohesive system which uses the enforced fairness to measure each features influence emphon the bias.
arXiv Detail & Related papers (2023-08-22T00:10:23Z) - Navigating Fairness Measures and Trade-Offs [0.0]
I show that by using Rawls' notion of justice as fairness, we can create a basis for navigating fairness measures and the accuracy trade-off.
This also helps to close part of the gap between philosophical accounts of distributive justice and the fairness literature.
arXiv Detail & Related papers (2023-07-17T13:45:47Z) - Equal Confusion Fairness: Measuring Group-Based Disparities in Automated
Decision Systems [5.076419064097733]
This paper proposes a new equal confusion fairness test to check an automated decision system for fairness and a new confusion parity error to quantify the extent of any unfairness.
Overall, the methods and metrics provided here may assess automated decision systems' fairness as part of a more extensive accountability assessment.
arXiv Detail & Related papers (2023-07-02T04:44:19Z) - Causal Fairness for Outcome Control [68.12191782657437]
We study a specific decision-making task called outcome control in which an automated system aims to optimize an outcome variable $Y$ while being fair and equitable.
In this paper, we first analyze through causal lenses the notion of benefit, which captures how much a specific individual would benefit from a positive decision.
We then note that the benefit itself may be influenced by the protected attribute, and propose causal tools which can be used to analyze this.
arXiv Detail & Related papers (2023-06-08T09:31:18Z) - Reconciling Predictive and Statistical Parity: A Causal Approach [68.59381759875734]
We propose a new causal decomposition formula for the fairness measures associated with predictive parity.
We show that the notions of statistical and predictive parity are not really mutually exclusive, but complementary and spanning a spectrum of fairness notions.
arXiv Detail & Related papers (2023-06-08T09:23:22Z) - Fairness in Contextual Resource Allocation Systems: Metrics and
Incompatibility Results [7.705334602362225]
We study systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing.
These systems often support communities disproportionately affected by systemic racial, gender, or other injustices.
We propose a framework for evaluating fairness in contextual resource allocation systems inspired by fairness metrics in machine learning.
arXiv Detail & Related papers (2022-12-04T02:30:58Z) - Causal Fairness Analysis [68.12191782657437]
We introduce a framework for understanding, modeling, and possibly solving issues of fairness in decision-making settings.
The main insight of our approach will be to link the quantification of the disparities present on the observed data with the underlying, and often unobserved, collection of causal mechanisms.
Our effort culminates in the Fairness Map, which is the first systematic attempt to organize and explain the relationship between different criteria found in the literature.
arXiv Detail & Related papers (2022-07-23T01:06:34Z) - Measuring Fairness of Text Classifiers via Prediction Sensitivity [63.56554964580627]
ACCUMULATED PREDICTION SENSITIVITY measures fairness in machine learning models based on the model's prediction sensitivity to perturbations in input features.
We show that the metric can be theoretically linked with a specific notion of group fairness (statistical parity) and individual fairness.
arXiv Detail & Related papers (2022-03-16T15:00:33Z) - Are There Exceptions to Goodhart's Law? On the Moral Justification of Fairness-Aware Machine Learning [14.428360876120333]
We argue that fairness measures are particularly sensitive to Goodhart's law.
We present a framework for moral reasoning about the justification of fairness metrics.
arXiv Detail & Related papers (2022-02-17T09:26:39Z) - Measuring Fairness Under Unawareness of Sensitive Attributes: A
Quantification-Based Approach [131.20444904674494]
We tackle the problem of measuring group fairness under unawareness of sensitive attributes.
We show that quantification approaches are particularly suited to tackle the fairness-under-unawareness problem.
arXiv Detail & Related papers (2021-09-17T13:45:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.