A Cycle-Consistency Constrained Framework for Dynamic Solution Space Reduction in Noninjective Regression
- URL: http://arxiv.org/abs/2507.04659v1
- Date: Mon, 07 Jul 2025 04:28:01 GMT
- Title: A Cycle-Consistency Constrained Framework for Dynamic Solution Space Reduction in Noninjective Regression
- Authors: Hanzhang Jia, Yi Gao,
- Abstract summary: This paper proposes a cycle consistency-based data-driven training framework.<n>Experiments on normalized synthetic and simulated datasets demonstrate that the proposed method achieves a cycle reconstruction error below 0.003.<n>The framework significantly reduces reliance on manual intervention, demonstrating potential advantages in non-injective regression tasks.
- Score: 2.775364659317507
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To address the challenges posed by the heavy reliance of multi-output models on preset probability distributions and embedded prior knowledge in non-injective regression tasks, this paper proposes a cycle consistency-based data-driven training framework. The method jointly optimizes a forward model {\Phi}: X to Y and a backward model {\Psi}: Y to X, where the cycle consistency loss is defined as L _cycleb equal L(Y reduce {\Phi}({\Psi}(Y))) (and vice versa). By minimizing this loss, the framework establishes a closed-loop mechanism integrating generation and validation phases, eliminating the need for manual rule design or prior distribution assumptions. Experiments on normalized synthetic and simulated datasets demonstrate that the proposed method achieves a cycle reconstruction error below 0.003, achieving an improvement of approximately 30% in evaluation metrics compared to baseline models without cycle consistency. Furthermore, the framework supports unsupervised learning and significantly reduces reliance on manual intervention, demonstrating potential advantages in non-injective regression tasks.
Related papers
- Semi-supervised learning for linear extremile regression [0.8973184739267972]
This paper introduces a novel definition of linear extremile regression along with an accompanying estimation methodology.<n>The regression coefficient estimators of this method achieve $sqrtn$-consistency, which nonparametric extremile regression may not provide.<n>We propose a semi-supervised learning approach to enhance estimation efficiency, even when the specified linear extremile regression model may be misspecified.
arXiv Detail & Related papers (2025-07-02T02:59:15Z) - CART-based Synthetic Tabular Data Generation for Imbalanced Regression [1.342834401139078]
We propose adapting an existing CART-based synthetic data generation method, tailoring it for imbalanced regression.<n>The new method integrates relevance and density-based mechanisms to guide sampling in sparse regions of the target space.<n>Our experimental study focuses on the prediction of extreme target values across benchmark datasets.
arXiv Detail & Related papers (2025-06-03T12:42:20Z) - Train with Perturbation, Infer after Merging: A Two-Stage Framework for Continual Learning [59.6658995479243]
We propose texttext-Perturb-and-Merge (P&M), a novel continual learning framework that integrates model merging into the CL paradigm to avoid forgetting.<n>Through theoretical analysis, we minimize the total loss increase across all tasks and derive an analytical solution for the optimal merging coefficient.<n>Our proposed approach achieves state-of-the-art performance on several continual learning benchmark datasets.
arXiv Detail & Related papers (2025-05-28T14:14:19Z) - SplitWise Regression: Stepwise Modeling with Adaptive Dummy Encoding [0.0]
SplitWise is a novel framework that enhances stepwise regression.<n>It adaptively transforms numeric predictors into threshold-based binary features using shallow decision trees.<n>It is evaluated on both synthetic and real-world datasets.
arXiv Detail & Related papers (2025-05-21T12:06:43Z) - Self-Boost via Optimal Retraining: An Analysis via Approximate Message Passing [58.52119063742121]
Retraining a model using its own predictions together with the original, potentially noisy labels is a well-known strategy for improving the model performance.<n>This paper addresses the question of how to optimally combine the model's predictions and the provided labels.<n>Our main contribution is the derivation of the Bayes optimal aggregator function to combine the current model's predictions and the given labels.
arXiv Detail & Related papers (2025-05-21T07:16:44Z) - Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
We introduce an untrained forward model residual block within the model-based architecture to match the data consistency in the measurement domain for each instance.
Our approach offers a unified solution that is less parameter-sensitive, requires no additional data, and enables simultaneous fitting of the forward model and reconstruction in a single pass.
arXiv Detail & Related papers (2024-03-07T19:02:13Z) - Self-Supervised Dataset Distillation for Transfer Learning [77.4714995131992]
We propose a novel problem of distilling an unlabeled dataset into a set of small synthetic samples for efficient self-supervised learning (SSL)
We first prove that a gradient of synthetic samples with respect to a SSL objective in naive bilevel optimization is textitbiased due to randomness originating from data augmentations or masking.
We empirically validate the effectiveness of our method on various applications involving transfer learning.
arXiv Detail & Related papers (2023-10-10T10:48:52Z) - Probabilistic Traffic Forecasting with Dynamic Regression [15.31488551912888]
This paper proposes a dynamic regression (DR) framework that enhances existing deeptemporal models by incorporating for learning the error process in traffic forecasting.<n>The framework relaxes the assumption of time independence by modeling the error series of the base model using a matrix- structured autoregressive (AR) model.<n>The newly designed loss function is based on the likelihood of a non-isotropic error term, enabling the model to generate probabilistic forecasts while preserving the original outputs of the base model.
arXiv Detail & Related papers (2023-01-17T01:12:44Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
Three simple ideas allow us to train models with DRO using a broader class of parametric likelihood ratios.
We find that models trained with the resulting parametric adversaries are consistently more robust to subpopulation shifts when compared to other DRO approaches.
arXiv Detail & Related papers (2022-04-13T12:43:12Z) - Automatic Debiased Machine Learning for Dynamic Treatment Effects and
General Nested Functionals [23.31865419578237]
We extend the idea of automated debiased machine learning to the dynamic treatment regime and more generally to nested functionals.
We show that the multiply robust formula for the dynamic treatment regime with discrete treatments can be re-stated in terms of a Riesz representer characterization of nested mean regressions.
arXiv Detail & Related papers (2022-03-25T19:54:17Z) - Autoregressive Score Matching [113.4502004812927]
We propose autoregressive conditional score models (AR-CSM) where we parameterize the joint distribution in terms of the derivatives of univariable log-conditionals (scores)
For AR-CSM models, this divergence between data and model distributions can be computed and optimized efficiently, requiring no expensive sampling or adversarial training.
We show with extensive experimental results that it can be applied to density estimation on synthetic data, image generation, image denoising, and training latent variable models with implicit encoders.
arXiv Detail & Related papers (2020-10-24T07:01:24Z) - Control as Hybrid Inference [62.997667081978825]
We present an implementation of CHI which naturally mediates the balance between iterative and amortised inference.
We verify the scalability of our algorithm on a continuous control benchmark, demonstrating that it outperforms strong model-free and model-based baselines.
arXiv Detail & Related papers (2020-07-11T19:44:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.