MatDecompSDF: High-Fidelity 3D Shape and PBR Material Decomposition from Multi-View Images
- URL: http://arxiv.org/abs/2507.04749v1
- Date: Mon, 07 Jul 2025 08:22:32 GMT
- Title: MatDecompSDF: High-Fidelity 3D Shape and PBR Material Decomposition from Multi-View Images
- Authors: Chengyu Wang, Isabella Bennett, Henry Scott, Liang Zhang, Mei Chen, Hao Li, Rui Zhao,
- Abstract summary: MatDecompSDF is a framework for recovering high-fidelity 3D shapes and decomposing their physically-based material properties from multi-view images.<n>Our method produces editable and relightable assets that can be seamlessly integrated into standard graphics pipelines.
- Score: 20.219010684946888
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present MatDecompSDF, a novel framework for recovering high-fidelity 3D shapes and decomposing their physically-based material properties from multi-view images. The core challenge of inverse rendering lies in the ill-posed disentanglement of geometry, materials, and illumination from 2D observations. Our method addresses this by jointly optimizing three neural components: a neural Signed Distance Function (SDF) to represent complex geometry, a spatially-varying neural field for predicting PBR material parameters (albedo, roughness, metallic), and an MLP-based model for capturing unknown environmental lighting. The key to our approach is a physically-based differentiable rendering layer that connects these 3D properties to the input images, allowing for end-to-end optimization. We introduce a set of carefully designed physical priors and geometric regularizations, including a material smoothness loss and an Eikonal loss, to effectively constrain the problem and achieve robust decomposition. Extensive experiments on both synthetic and real-world datasets (e.g., DTU) demonstrate that MatDecompSDF surpasses state-of-the-art methods in geometric accuracy, material fidelity, and novel view synthesis. Crucially, our method produces editable and relightable assets that can be seamlessly integrated into standard graphics pipelines, validating its practical utility for digital content creation.
Related papers
- Generalizable and Relightable Gaussian Splatting for Human Novel View Synthesis [49.67420486373202]
GRGS is a generalizable and relightable 3D Gaussian framework for high-fidelity human novel view synthesis under diverse lighting conditions.<n>We introduce a Lighting-aware Geometry Refinement (LGR) module trained on synthetically relit data to predict accurate depth and surface normals.
arXiv Detail & Related papers (2025-05-27T17:59:47Z) - MaterialMVP: Illumination-Invariant Material Generation via Multi-view PBR Diffusion [37.596740171045845]
Physically-based rendering (PBR) has become a cornerstone in modern computer graphics, enabling realistic material representation and lighting interactions in 3D scenes.<n>We present a novel end-to-end model for generating PBR textures from 3D meshes and image prompts, addressing key challenges in multi-view material synthesis.
arXiv Detail & Related papers (2025-03-13T11:57:30Z) - IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illuminations [64.07859467542664]
Capturing geometric and material information from images remains a fundamental challenge in computer vision and graphics.<n>Traditional optimization-based methods often require hours of computational time to reconstruct geometry, material properties, and environmental lighting from dense multi-view inputs.<n>We introduce IDArb, a diffusion-based model designed to perform intrinsic decomposition on an arbitrary number of images under varying illuminations.
arXiv Detail & Related papers (2024-12-16T18:52:56Z) - GlossyGS: Inverse Rendering of Glossy Objects with 3D Gaussian Splatting [21.23724172779984]
GlossyGS aims to precisely reconstruct the geometry and materials of glossy objects by integrating material priors.
We demonstrate through quantitative analysis and qualitative visualization that the proposed method is effective to reconstruct high-fidelity geometries and materials of glossy objects.
arXiv Detail & Related papers (2024-10-17T09:00:29Z) - Triplet: Triangle Patchlet for Mesh-Based Inverse Rendering and Scene Parameters Approximation [0.0]
inverse rendering seeks to derive the physical properties of a scene, including light, geometry, textures, and materials.
Meshes, as a traditional representation adopted by many simulation pipeline, still show limited influence in radiance field for inverse rendering.
This paper introduces a novel framework called Triangle Patchlet (abbr. Triplet), a mesh-based representation, to comprehensively approximate these parameters.
arXiv Detail & Related papers (2024-10-16T09:59:11Z) - AniSDF: Fused-Granularity Neural Surfaces with Anisotropic Encoding for High-Fidelity 3D Reconstruction [55.69271635843385]
We present AniSDF, a novel approach that learns fused-granularity neural surfaces with physics-based encoding for high-fidelity 3D reconstruction.<n>Our method boosts the quality of SDF-based methods by a great scale in both geometry reconstruction and novel-view synthesis.
arXiv Detail & Related papers (2024-10-02T03:10:38Z) - OpenMaterial: A Comprehensive Dataset of Complex Materials for 3D Reconstruction [54.706361479680055]
We introduce the OpenMaterial dataset, comprising 1001 objects made of 295 distinct materials.
OpenMaterial provides comprehensive annotations, including 3D shape, material type, camera pose, depth, and object mask.
It stands as the first large-scale dataset enabling quantitative evaluations of existing algorithms on objects with diverse and challenging materials.
arXiv Detail & Related papers (2024-06-13T07:46:17Z) - High-fidelity 3D GAN Inversion by Pseudo-multi-view Optimization [51.878078860524795]
We present a high-fidelity 3D generative adversarial network (GAN) inversion framework that can synthesize photo-realistic novel views.
Our approach enables high-fidelity 3D rendering from a single image, which is promising for various applications of AI-generated 3D content.
arXiv Detail & Related papers (2022-11-28T18:59:52Z) - {\phi}-SfT: Shape-from-Template with a Physics-Based Deformation Model [69.27632025495512]
Shape-from-Template (SfT) methods estimate 3D surface deformations from a single monocular RGB camera.
This paper proposes a new SfT approach explaining 2D observations through physical simulations.
arXiv Detail & Related papers (2022-03-22T17:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.